GruStepLayer.cpp 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "GruCompute.h"
#include "paddle/utils/Stat.h"

namespace paddle {

/**
 * @brief GruStepLayer is like GatedRecurrentLayer, but used in recurrent
 * layer group. GruStepLayer takes 2 input layer.
 * - input[0] with size * 3 and diveded into 3 equal parts: (xz_t, xr_t, xi_t).
 * - input[1] with size: {prev_out}.
 *
 * parameter and biasParameter is also diveded into 3 equal parts:
 * - parameter consists of (U_z, U_r, U)
 * - baisParameter consists of (bias_z, bias_r, bias_o)
 *
 * \f[
 * update \ gate: z_t = actGate(xz_t + U_z * prev_out + bias_z) \\
 * reset \ gate: r_t = actGate(xr_t + U_r * prev_out + bias_r)  \\
34 35
 * output \ candidate: {h}_t = actNode(xi_t + U * dot(r_t, prev_out) + bias_o)
 * \\
Z
zhangjinchao01 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
 * output: h_t = dot((1-z_t), prev_out) + dot(z_t, prev_out)
 * \f]
 *
 * @note
 *   - dot denotes "element-wise multiplication".
 *   - actNode is defined by config active_type
 *   - actGate is defined by config actvie_gate_type
 *
 * The config file api if gru_step_layer.
 */
class GruStepLayer : public Layer, public GruCompute {
protected:
  Argument gate_;
  Argument resetOutput_;
  std::unique_ptr<Weight> weight_;
  std::unique_ptr<Weight> bias_;

public:
  explicit GruStepLayer(const LayerConfig& config) : Layer(config) {}

  ~GruStepLayer() {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);
  void backward(const UpdateCallback& callback = nullptr);
};

REGISTER_LAYER(gru_step, GruStepLayer);

bool GruStepLayer::init(const LayerMap& layerMap,
                        const ParameterMap& parameterMap) {
  if (!Layer::init(layerMap, parameterMap)) return false;
  CHECK_EQ(2U, inputLayers_.size());

  CHECK_EQ(getSize() * getSize() * 3, parameters_[0]->getSize());
  weight_.reset(new Weight(getSize(), getSize() * 3, parameters_[0]));

  if (biasParameter_.get() != NULL) {
    CHECK_EQ(getSize() * 3, biasParameter_->getSize());
    bias_.reset(new Weight(1, getSize() * 3, biasParameter_));
  }

  GruCompute::init(config_);
  return true;
}

void GruStepLayer::forward(PassType passType) {
  REGISTER_TIMER_INFO("GruStepFwTime", getName().c_str());
  Layer::forward(passType);

  const Argument& input = getInput(0);
  const Argument& prevOutput = getInput(1);
  CHECK_EQ(getSize() * 3, input.value->getWidth());
  CHECK_EQ(getSize(), prevOutput.value->getWidth());

  int batchSize = input.getBatchSize();
  resetOutput(batchSize, getSize());
94 95 96 97 98 99 100 101 102 103
  resetSpecifyOutput(gate_,
                     batchSize,
                     getSize() * 3,
                     /* isValueClean */ false,
                     /* isGradClean */ false);
  resetSpecifyOutput(resetOutput_,
                     batchSize,
                     getSize(),
                     /* isValueClean */ false,
                     /* isGradClean */ false);
Z
zhangjinchao01 已提交
104 105 106 107 108 109 110 111
  gate_.value->assign(*input.value);
  if (bias_) {
    gate_.value->addBias(*(bias_->getW()), 1);
  }

  hl_gru_value gruValue;
  gruValue.gateWeight = weight_->getW()->getData();
  gruValue.stateWeight = weight_->getW()->getData() + getSize() * getSize() * 2;
112
  gruValue.gateValue = gate_.value->getData();
Z
zhangjinchao01 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  gruValue.resetOutputValue = resetOutput_.value->getData();
  gruValue.outputValue = output_.value->getData();
  gruValue.prevOutValue = prevOutput.value->getData();

  if (useGpu_) {
    GruCompute::forward<1>(gruValue, getSize(), batchSize);
  } else {
    GruCompute::forward<0>(gruValue, getSize(), batchSize);
  }
}

void GruStepLayer::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("GruStepBwTime", getName().c_str());

  const Argument& input = getInput(0);
  const Argument& prevOutput = getInput(1);
  int batchSize = input.getBatchSize();

  hl_gru_value gruValue;
  gruValue.gateWeight = weight_->getW()->getData();
  gruValue.stateWeight = weight_->getW()->getData() + getSize() * getSize() * 2;
134
  gruValue.gateValue = gate_.value->getData();
Z
zhangjinchao01 已提交
135 136 137 138
  gruValue.resetOutputValue = resetOutput_.value->getData();
  gruValue.outputValue = output_.value->getData();
  gruValue.prevOutValue = prevOutput.value->getData();

139
  hl_gru_grad gruGrad;
Z
zhangjinchao01 已提交
140
  gruGrad.gateWeightGrad =
141
      (weight_->getWGrad() ? weight_->getWGrad()->getData() : nullptr);
Z
zhangjinchao01 已提交
142
  gruGrad.stateWeightGrad =
143 144 145
      (weight_->getWGrad()
           ? weight_->getWGrad()->getData() + getSize() * getSize() * 2
           : nullptr);
Z
zhangjinchao01 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

  gruGrad.gateGrad = gate_.grad->getData();
  gruGrad.resetOutputGrad = resetOutput_.grad->getData();
  gruGrad.outputGrad = output_.grad->getData();
  if (prevOutput.grad) {
    gruGrad.prevOutGrad = prevOutput.grad->getData();
  } else {
    gruGrad.prevOutGrad = nullptr;
  }

  if (useGpu_) {
    GruCompute::backward<1>(gruValue, gruGrad, getSize(), batchSize);
  } else {
    GruCompute::backward<0>(gruValue, gruGrad, getSize(), batchSize);
  }

  if (input.grad) {
    input.grad->add(*gate_.grad);
  }

  if (bias_ && bias_->getWGrad()) {
    bias_->getWGrad()->collectBias(*gate_.grad, 1);
  }

  if (bias_) {
    bias_->getParameterPtr()->incUpdate(callback);
  }
  weight_->getParameterPtr()->incUpdate(callback);
}

}  // namespace paddle