affine_grid_op.cc 8.4 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/affine_grid_op.h"
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
struct Linspace<paddle::platform::CPUDeviceContext, T> {
29 30 31
  void operator()(T start, T end, int count, framework::Tensor* numbers,
                  const framework::ExecutionContext& ctx) {
    T* number_data = numbers->mutable_data<T>({count}, platform::CPUPlace());
W
whs 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    T slice = (end - start) / (T)(count - 1);
    for (int i = 0; i < count; ++i) {
      number_data[i] = start + (T)i * slice;
    }
  }
};

class AffineGridOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Theta"),
                   "Input(Theta) of AffineGridOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Output"),
                   "Output(Output) of AffineGridOp should not be null.");
    auto theta_dims = ctx->GetInputDim("Theta");
    PADDLE_ENFORCE(theta_dims.size() == 3,
                   "AffineGrid's Input(Theta) should be 3-D tensor.");

    auto output_shape = ctx->Attrs().Get<std::vector<int>>("output_shape");
    if (output_shape.size() == 0) {
      PADDLE_ENFORCE(ctx->HasInput("OutputShape"),
                     "Input(OutputShape) of AffineGridOp should not be null if "
                     "attr(output_shape) is not configured.");
      auto output_shape_dims = ctx->GetInputDim("OutputShape");
      PADDLE_ENFORCE(output_shape_dims.size() == 1,
                     "AffineGrid's Input(OutputShape) should be 1-D tensor.");
    } else {
      PADDLE_ENFORCE(output_shape.size() == 4,
                     "The size of attr(output_shape) should be 4.");
    }

    PADDLE_ENFORCE(theta_dims[1] == 2, "Input(theta) dims[1] should be 2.");
    PADDLE_ENFORCE(theta_dims[2] == 3, "Input(theta) dims[2] should be 3.");
    // N * H * W * 2
    ctx->SetOutputDim("Output",
                      framework::make_ddim({theta_dims[0], -1, -1, 2}));
    ctx->ShareLoD("Theta", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
    if (platform::CanCUDNNBeUsed(ctx)) {
      library = framework::LibraryType::kCUDNN;
    }
#endif
M
minqiyang 已提交
81
    auto data_type = ctx.Input<Tensor>("Theta")->type();
W
whs 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    return framework::OpKernelType(data_type, ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout, library);
  }
};

class AffineGridOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput(
        "Theta",
        "(Tensor) A batch of affine transform parameters with shape [N, 2, 3]. "
        "It is used to transform coordinate (x_0, y_0) to coordinate (x_1, "
        "y_1).");
    AddInput("OutputShape",
             "(Tensor) The shape of target image with format [N, C, H, W].")
        .AsDispensable();
    AddOutput("Output", "(Tensor) Output Tensor with shape [N, H, W, 2].");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(true);
    AddAttr<std::vector<int>>(
        "output_shape",
        "The target output image shape with format [N, C, H, W].")
        .SetDefault(std::vector<int>());

    AddComment(R"DOC(
    It generates a grid of (x,y) coordinates using the parameters of the
    affine transformation that correspond to a set of points where the input
    feature map should be sampled to produce the transformed output feature map.

    Given:
        Theta = [[[x_11, x_12, x_13]
                  [x_14, x_15, x_16]]
                 [[x_21, x_22, x_23]
                  [x_24, x_25, x_26]]]
    
        OutputShape = [2, 3, 5, 5]

    Step 1:

        Generate relative coordinates according to OutputShape.
        The values of relative coordinates are in the interval between -1 and 1.
        The shape of the relative coordinates is [2, H, W] as below:
    
        C = [[[-1.  -1.  -1.  -1.  -1. ]
              [-0.5 -0.5 -0.5 -0.5 -0.5]
              [ 0.   0.   0.   0.   0. ]
              [ 0.5  0.5  0.5  0.5  0.5]
              [ 1.   1.   1.   1.   1. ]] 
             [[-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]
              [-1.  -0.5  0.   0.5  1. ]]]
        C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.
    
    Step2:
        Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
        C_ = [[-1.  -1.   1. ]
              [-0.5 -1.   1. ]
              [ 0.  -1.   1. ]
              [ 0.5 -1.   1. ]
              [ 1.  -1.   1. ]
              [-1.  -0.5  1. ]
              [-0.5 -0.5  1. ]
              [ 0.  -0.5  1. ]
              [ 0.5 -0.5  1. ]
              [ 1.  -0.5  1. ]
              [-1.   0.   1. ]
              [-0.5  0.   1. ]
              [ 0.   0.   1. ]
              [ 0.5  0.   1. ]
              [ 1.   0.   1. ]
              [-1.   0.5  1. ]
              [-0.5  0.5  1. ]
              [ 0.   0.5  1. ]
              [ 0.5  0.5  1. ]
              [ 1.   0.5  1. ]
              [-1.   1.   1. ]
              [-0.5  1.   1. ]
              [ 0.   1.   1. ]
              [ 0.5  1.   1. ]
              [ 1.   1.   1. ]]
    Step3:
        Compute output by equation $$Output[i] = C_ * Theta[i]^T$$
    )DOC");
  }
};

class AffineGridOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    auto theta_dims = ctx->GetInputDim("Theta");
    if (ctx->HasOutput(framework::GradVarName("Theta"))) {
      ctx->SetOutputDim(framework::GradVarName("Theta"), theta_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
    }
#endif
M
minqiyang 已提交
191 192 193
    return framework::OpKernelType(ctx.Input<Tensor>("Theta")->type(),
                                   ctx.GetPlace(),
                                   framework::DataLayout::kAnyLayout, library_);
W
whs 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  }
};

class AffineGridGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("affine_grid_grad");
    op->SetInput("Theta", Input("Theta"));
    op->SetInput("OutputShape", Input("OutputShape"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("Theta"), InputGrad("Theta"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(affine_grid, ops::AffineGridOp, ops::AffineGridOpMaker,
                  ops::AffineGridGradMaker);
REGISTER_OPERATOR(affine_grid_grad, ops::AffineGridOpGrad);

REGISTER_OP_CPU_KERNEL(
    affine_grid,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    affine_grid_grad,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AffineGridGradOpKernel<paddle::platform::CPUDeviceContext, double>);