engine.cc 4.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

void TensorRTEngine::Build(const DescType& paddle_model) {
  PADDLE_ENFORCE(false, "not implemented");
}

void TensorRTEngine::Execute(int batch_size) {
  infer_context_->enqueue(batch_size, buffers_.data(), *stream_, nullptr);
  cudaStreamSynchronize(*stream_);
}

TensorRTEngine::~TensorRTEngine() {
  // clean buffer
  for (auto& buffer : buffers_) {
    if (buffer != nullptr) {
      PADDLE_ENFORCE_EQ(0, cudaFree(buffer));
      buffer = nullptr;
    }
  }
}

void TensorRTEngine::FreezeNetwork() {
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");

  infer_context_.reset(infer_engine_->createExecutionContext());

  // allocate GPU buffers.
  buffers_.resize(buffer_sizes_.size(), nullptr);
  for (auto& item : buffer_sizes_) {
    if (item.second == 0) {
      auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str());
      item.second = kDataTypeSize[static_cast<int>(
                        infer_engine_->getBindingDataType(slot_offset))] *
                    AccumDims(infer_engine_->getBindingDimensions(slot_offset));
    }
    PADDLE_ENFORCE_EQ(0, cudaMalloc(&buffer(item.first), item.second));
  }
}

nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
                                                nvinfer1::DataType dtype,
                                                const nvinfer1::Dims& dim) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
  auto* input = infer_network_->addInput(name.c_str(), dtype, dim);
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);

  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] * AccumDims(dim);
  return input;
}

void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                                   const std::string& name) {
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

  auto* output = layer->getOutput(offset);
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
  infer_network_->markOutput(*output);
  // output buffers' size can only be decided latter, set zero here to mark this
  // and will reset latter.
  buffer_sizes_[name] = 0;
}

void* TensorRTEngine::GetOutputInGPU(const std::string& name) {
  return buffer(name);
}

void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
                                    size_t max_size) {
  // determine data size
  auto it = buffer_sizes_.find(name);
  PADDLE_ENFORCE(it != buffer_sizes_.end());
  PADDLE_ENFORCE_GT(it->second, 0);
  PADDLE_ENFORCE_GE(max_size, it->second);

  PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buffer(name), it->second,
                                       cudaMemcpyDeviceToHost, *stream_));
}

void*& TensorRTEngine::buffer(const std::string& name) {
  PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first.");
  auto it = buffer_sizes_.find(name);
  PADDLE_ENFORCE(it != buffer_sizes_.end());
  auto slot_offset = infer_engine_->getBindingIndex(name.c_str());
  return buffers_[slot_offset];
}

void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data,
                                     size_t size) {
  void* buf = buffer(name);
  PADDLE_ENFORCE_EQ(
      0, cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_));
}

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle