elementwise_div_op.h 2.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15 16
#pragma once

Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/elementwise_op_function.h"
G
gongweibao 已提交
18 19 20 21

namespace paddle {
namespace operators {

22 23 24 25 26
template <typename T>
struct DivFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a / b; }
};

Q
QI JUN 已提交
27
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
28
class ElementwiseDivKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
29 30
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
31 32 33 34 35 36 37
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
38 39
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          DivFunctor<T>(), z);
G
gongweibao 已提交
40 41 42 43
  }
};

template <typename T>
C
chengduoZH 已提交
44 45
struct DivGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
G
gongweibao 已提交
46 47 48
};

template <typename T>
C
chengduoZH 已提交
49 50 51
struct DivGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
    return -dout * x / (y * y);
G
gongweibao 已提交
52 53 54
  }
};

Q
QI JUN 已提交
55
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
56
class ElementwiseDivGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
57 58
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
59 60 61 62 63 64 65 66 67
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Input<Tensor>("Out");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
68 69
    ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
G
gongweibao 已提交
70 71 72 73 74
  }
};

}  // namespace operators
}  // namespace paddle