elementwise_op_function.h 54.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
D
dzhwinter 已提交
16

17
#include <algorithm>
D
dzhwinter 已提交
18
#include <iterator>
19
#include <vector>
Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"
24

C
chengduoZH 已提交
25
#ifdef __NVCC__
26
#include <cuda.h>
C
chengduoZH 已提交
27
#include <thrust/iterator/iterator_adaptor.h>
28
#include "paddle/fluid/platform/cuda_device_function.h"
D
dzhwinter 已提交
29
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yu Yang 已提交
30
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
C
chengduoZH 已提交
31 32
#endif

Y
Yi Wang 已提交
33
#include "paddle/fluid/operators/math/math_function.h"
Y
Yu Yang 已提交
34
#include "paddle/fluid/platform/for_range.h"
35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace operators {

/*
 * Out = X ⊙ Y
 * If Y's shape does not match X' shape, they will be reshaped.
 * For example:
 * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
 *    pre=2, n=3*4, post=5
C
chengduo 已提交
45
 *    x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
46 47
 * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
 *    pre=2*3, n=4*5, post=1
C
chengduo 已提交
48
 *    x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
49
 */
50 51 52
inline void get_mid_dims(const framework::DDim &x_dims,
                         const framework::DDim &y_dims, const int axis,
                         int *pre, int *n, int *post) {
53 54 55
  *pre = 1;
  *n = 1;
  *post = 1;
56
  for (int i = 0; i < axis; ++i) {
57
    (*pre) *= x_dims[i];
58 59 60 61 62
  }

  for (int i = 0; i < y_dims.size(); ++i) {
    PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
                      "Broadcast dimension mismatch.");
63
    (*n) *= y_dims[i];
64 65 66
  }

  for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
67
    (*post) *= x_dims[i];
68 69 70
  }
}

71
inline framework::DDim trim_trailing_singular_dims(
72
    const framework::DDim &dims) {
73
  // Remove trailing dimensions of size 1 for y
74
  auto actual_dims_size = dims.size();
75
  for (; actual_dims_size != 0; --actual_dims_size) {
76
    if (dims[actual_dims_size - 1] != 1) break;
77
  }
78 79 80 81 82

  std::vector<int> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
83
  }
84 85 86
  if (trim_dims.size() == 0) {
    return framework::DDim(framework::make_dim());
  }
87 88
  framework::DDim actual_dims = framework::make_ddim(trim_dims);
  return actual_dims;
89 90
}

Q
QI JUN 已提交
91
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
92
class RowwiseTransformIterator;
93

Q
QI JUN 已提交
94
template <typename T, typename DeviceContext>
C
chengduoZH 已提交
95
class MidWiseTransformIterator;
C
chengduoZH 已提交
96

D
dzhwinter 已提交
97
// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
C
chengduoZH 已提交
98
template <typename T>
D
dzhwinter 已提交
99 100
class RowwiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, typename T,
D
dzhwinter 已提交
101
                           std::ptrdiff_t, typename T *, typename T &> {
C
chengduoZH 已提交
102
 public:
103
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}
C
chengduoZH 已提交
104

105
  RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
106
    ++i_;
C
chengduoZH 已提交
107 108 109
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
C
chengduoZH 已提交
110 111 112
    return *this;
  }

113 114
  bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
115
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
116 117
  }

118 119
  bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
120
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
121 122
  }

123
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
124

C
chengduoZH 已提交
125
 private:
126
  const T *ptr_;
C
chengduoZH 已提交
127
  int i_;
C
chengduoZH 已提交
128
  int64_t n_;
C
chengduoZH 已提交
129 130 131
};

template <typename T>
D
dzhwinter 已提交
132 133
class MidWiseTransformIterator<T, platform::CPUDeviceContext>
    : public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
D
dzhwinter 已提交
134
                           T *, T &> {
C
chengduoZH 已提交
135
 public:
136
  MidWiseTransformIterator(const T *ptr, int n, int post)
C
chengduoZH 已提交
137 138
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

139
  MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
C
chengduoZH 已提交
140
    ++j_;
C
chengduoZH 已提交
141 142
    if (UNLIKELY(j_ == post_)) {
      ++i_;
C
refine  
chengduoZH 已提交
143
      j_ = 0;
C
chengduoZH 已提交
144 145 146
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
C
chengduoZH 已提交
147
    }
C
chengduoZH 已提交
148 149 150
    return *this;
  }

151 152
  bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
153
    return (ptr_ + i_) == &(*rhs);
C
chengduoZH 已提交
154 155
  }

156 157
  bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
                      &rhs) const {
C
chengduoZH 已提交
158
    return (ptr_ + i_) != &(*rhs);
C
chengduoZH 已提交
159 160
  }

161
  const T &operator*() { return ptr_[i_]; }
C
chengduoZH 已提交
162

C
chengduoZH 已提交
163
 private:
164
  const T *ptr_;
C
refine  
chengduoZH 已提交
165
  int64_t i_;
C
chengduoZH 已提交
166 167
  int64_t j_;
  int64_t n_;
C
refine  
chengduoZH 已提交
168
  int64_t post_;
C
chengduoZH 已提交
169 170
};

C
chengduoZH 已提交
171 172
#ifdef __NVCC__
template <typename T>
Q
QI JUN 已提交
173
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
174
    : public thrust::iterator_adaptor<
175
          RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
176 177
 public:
  typedef thrust::iterator_adaptor<
178
      RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
179
      super_t;
180
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
181
      : super_t(x), begin_(x), n_(n) {}
C
chengduoZH 已提交
182 183 184 185
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
186
  const T *begin_;
C
chengduoZH 已提交
187
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
188 189 190 191 192
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
Q
QI JUN 已提交
193
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
C
chengduoZH 已提交
194
    : public thrust::iterator_adaptor<
195
          MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
C
chengduoZH 已提交
196 197
 public:
  typedef thrust::iterator_adaptor<
198
      MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
C
chengduoZH 已提交
199
      super_t;
200
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
201
      : super_t(x), begin_(x), n_(n), post_(post) {}
C
chengduoZH 已提交
202 203 204 205 206
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
207
  const T *begin_;
C
chengduoZH 已提交
208
  HOSTDEVICE typename super_t::reference dereference() const {
C
chengduoZH 已提交
209 210 211 212 213
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

214 215
template <typename Functor, typename T, typename DeviceContext,
          typename OutType = T>
C
chengduoZH 已提交
216 217
class TransformFunctor {
 public:
218 219
  TransformFunctor(const framework::Tensor *x, const framework::Tensor *y,
                   framework::Tensor *z, const DeviceContext &ctx, Functor func)
C
chengduoZH 已提交
220 221
      : x_(x->data<T>()),
        y_(y->data<T>()),
222
        z_(z->mutable_data<OutType>(ctx.GetPlace())),
C
chengduoZH 已提交
223 224 225 226 227
        nx_(x->numel()),
        ctx_(ctx),
        func_(func) {}

  inline void Run() const {
Q
QI JUN 已提交
228
    platform::Transform<DeviceContext> trans;
C
chengduoZH 已提交
229
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
C
chengduoZH 已提交
230 231 232
  }

  inline void RunRowWise(int n, int pre) const {
Q
QI JUN 已提交
233 234 235
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator<T, DeviceContext>(y_, n),
          z_, func_);
C
chengduoZH 已提交
236 237 238
  }

  inline void RunMidWise(int n, int pre, int post) const {
Q
QI JUN 已提交
239 240 241
    platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_,
          MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
C
chengduoZH 已提交
242 243
  }

C
chengduoZH 已提交
244
 private:
245 246 247
  const T *x_;
  const T *y_;
  OutType *z_;
C
chengduoZH 已提交
248
  int64_t nx_;
249
  const DeviceContext &ctx_;
C
chengduoZH 已提交
250 251 252
  Functor func_;
};

253 254
#define EIGEN_FUNCTOR(name, eigen_op)                                          \
  struct Eigen##name##Functor {                                                \
Q
QI JUN 已提交
255
    template <typename DeviceContext, typename T>                              \
256 257 258
    inline void Run(const framework::Tensor *x, const framework::Tensor *y,    \
                    framework::Tensor *z,                                      \
                    const framework::ExecutionContext &ctx) {                  \
259 260 261
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
Q
QI JUN 已提交
262 263 264
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_e);                                                  \
265
    }                                                                          \
Q
QI JUN 已提交
266
    template <typename DeviceContext, typename T>                              \
267 268 269
    inline void RunBroadCast(const framework::Tensor *x,                       \
                             const framework::Tensor *y, framework::Tensor *z, \
                             const framework::ExecutionContext &ctx, int pre,  \
270 271 272 273 274 275 276
                             int n) {                                          \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))                  \
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))             \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
277 278 279
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
280
    }                                                                          \
Q
QI JUN 已提交
281
    template <typename DeviceContext, typename T>                              \
282 283 284 285
    inline void RunBroadCast2(const framework::Tensor *x,                      \
                              const framework::Tensor *y,                      \
                              framework::Tensor *z,                            \
                              const framework::ExecutionContext &ctx, int pre, \
286 287 288 289 290 291 292
                              int n, int post) {                               \
      auto x_e = framework::EigenVector<T>::Flatten(*x);                       \
      auto y_e = framework::EigenVector<T>::Flatten(*y);                       \
      auto z_e = framework::EigenVector<T>::Flatten(*z);                       \
      auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))               \
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))       \
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));          \
Q
QI JUN 已提交
293 294 295
      z_e.device(                                                              \
          *ctx.template device_context<DeviceContext>().eigen_device()) =      \
          eigen_op(x_e, y_bcast);                                              \
296 297 298 299
    }                                                                          \
  }

#define EIGEN_ADD(x, y) ((x) + (y))
300

301 302 303
EIGEN_FUNCTOR(Add, EIGEN_ADD);

#define EIGEN_SUB(x, y) ((x) - (y))
304

305 306 307
EIGEN_FUNCTOR(Sub, EIGEN_SUB);

#define EIGEN_MUL(x, y) ((x) * (y))
308

309 310 311
EIGEN_FUNCTOR(Mul, EIGEN_MUL);

#define EIGEN_DIV(x, y) ((x) / (y))
312

313 314
EIGEN_FUNCTOR(Div, EIGEN_DIV);

Y
Yu Yang 已提交
315 316
template <typename T, typename DX_OP, typename DY_OP>
struct ElemwiseGradNoBroadcast {
317 318 319 320
  const T *x_;
  const T *y_;
  const T *out_;
  const T *dout_;
Y
Yu Yang 已提交
321 322 323 324 325 326

  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
C
chengduoZH 已提交
327
      dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
Y
Yu Yang 已提交
328 329 330 331 332
    }
  }

  DX_OP dx_op_;
  DY_OP dy_op_;
333 334
  T *dx_;
  T *dy_;
Y
Yu Yang 已提交
335 336 337
};

template <typename T, typename DX_OP, typename DY_OP>
338 339 340
static void ElemwiseGradBroadcast1CPU(const T *x, const T *y, const T *out,
                                      const T *dout, int h, int w, DX_OP dx_op,
                                      DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int x_offset = i * w + j;
      if (dx != nullptr) {
        dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
      }
      if (dy != nullptr) {
        T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        if (i == 0) {
          dy[j] = tmp;
        } else {
          dy[j] += tmp;
        }
      }
    }
  }
}
358

D
dzhwinter 已提交
359
#ifdef __NVCC__
Y
Yu Yang 已提交
360 361
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
362 363
    const T *x, const T *y, const T *out, const T *dout, int h, int w,
    DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
364 365 366
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
367
  T val = 0;
Y
Yu Yang 已提交
368 369 370 371 372 373 374

  do {
    int x_offset = i * w + j;
    if (dx) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }
    if (dy) {
C
chengduoZH 已提交
375
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
376 377 378 379 380
    }
    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

  if (dy) {
C
chengduoZH 已提交
381
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
382
    val = paddle::platform::reduceSum(val, tid, h);
Y
Yu Yang 已提交
383
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
384
      dy[j] = val;
Y
Yu Yang 已提交
385 386 387 388 389
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
390 391
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T *x,
                                       const T *y, const T *out, const T *dout,
Y
Yu Yang 已提交
392
                                       int h, int w, DX_OP dx_op, DY_OP dy_op,
393
                                       T *dx, T *dy) {
Y
Yu Yang 已提交
394 395
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
C
chengduoZH 已提交
396 397
  ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, h, w, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
398 399 400 401 402
}

#endif

template <typename T, typename DX_OP, typename DY_OP>
403 404 405
static void ElemwiseGradBroadcast2CPU(const T *x, const T *y, const T *out,
                                      const T *dout, int pre, int n, int post,
                                      DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int x_offset = i * n * post + j * post + k;
        if (dx != nullptr) {
          dx[x_offset] =
              dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
        }
        if (dy != nullptr) {
          T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
          if (i == 0 && k == 0) {
            dy[j] = tmp;
          } else {
            dy[j] += tmp;
          }
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
430 431
    const T *x, const T *y, const T *out, const T *dout, int pre, int n,
    int post, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
432 433 434
  int tid = threadIdx.x;
  int j = blockIdx.x;

435
  T val = 0;
Y
Yu Yang 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449
  int ttid = tid;

  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int x_offset = i * n * post + j * post + k;

    if (dx != nullptr) {
      dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
    }

    if (dy != nullptr) {
C
chengduoZH 已提交
450
      val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
Y
Yu Yang 已提交
451 452 453 454 455 456
    }

    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

  if (dy) {
C
chengduoZH 已提交
457 458
    int h = pre * post;
    h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
459
    val = paddle::platform::reduceSum(val, tid, h);
C
chengduoZH 已提交
460
    if (threadIdx.x == 0) {
C
chengduoZH 已提交
461
      dy[j] = val;
Y
Yu Yang 已提交
462 463 464 465 466
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP>
467 468
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T *x,
                                       const T *y, const T *out, const T *dout,
Y
Yu Yang 已提交
469
                                       int pre, int n, int post, DX_OP dx_op,
470
                                       DY_OP dy_op, T *dx, T *dy) {
Y
Yu Yang 已提交
471 472
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
C
chengduoZH 已提交
473 474
  ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
      x, y, out, dout, pre, n, post, dx_op, dy_op, dx, dy);
Y
Yu Yang 已提交
475 476 477 478
}

#endif

479 480
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeNoBroadcast(
481 482 483 484 485
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
486
  size_t N = static_cast<size_t>(framework::product(x_dim));
D
dzhwinter 已提交
487
#if !defined(_WIN32)
488 489
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
D
dzhwinter 已提交
490 491 492 493
#else
  platform::ForRange<DeviceContext> for_range(
      ctx.device_context<DeviceContext>(), N);
#endif  // !_WIN32
494 495 496 497 498 499 500 501
  for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
      x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
      dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
      dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
void ElemwiseGradComputeWithBroadcast(
502 503 504 505 506
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, const framework::Tensor &out,
    const framework::Tensor &dout, int axis, framework::Tensor *dx,
    framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

  int pre, n, post;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast1CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast1CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), h, w, dx_op,
          dy_op, dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      ElemwiseGradBroadcast2CUDA(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post, dx_op,
          dy_op, dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      ElemwiseGradBroadcast2CPU(
          x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
          dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

Y
Yu Yang 已提交
549
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
550 551 552 553 554
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
                         const framework::Tensor &x, const framework::Tensor &y,
                         const framework::Tensor &out,
                         const framework::Tensor &dout, int axis,
                         framework::Tensor *dx, framework::Tensor *dy,
Y
Yu Yang 已提交
555
                         DX_OP dx_op, DY_OP dy_op) {
556 557
  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
Y
Yu Yang 已提交
558
  if (x.dims() == y.dims()) {
559 560
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
Y
Yu Yang 已提交
561
  } else {  // Y is a scalar
562 563 564 565 566 567 568 569 570 571
    ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  }
}

// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
// explicit gradient can cut off X, Y, Out from gradient op
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
// elementwise code.
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
572 573 574 575 576 577
void ElemwiseExplicitGradCompute(const framework::ExecutionContext &ctx,
                                 const framework::Tensor &x,
                                 const framework::Tensor &y,
                                 const framework::Tensor &out,
                                 const framework::Tensor &dout, int axis,
                                 framework::Tensor *dx, framework::Tensor *dy,
578 579
                                 DX_OP dx_op, DY_OP dy_op) {
  if (dy == nullptr) {
580
    const framework::DDim &dx_dims = dout.dims();
581 582 583 584 585
    auto dy_dims = dx_dims;
    ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
        ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
  } else {
    if (dout.dims() == dy->dims()) {
586 587
      const framework::DDim &dx_dims = dout.dims();
      const framework::DDim &dy_dims = dy->dims();
588 589 590 591
      ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
          ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
    } else {  // Y is a scalar
      auto dx_dims = dout.dims();
592
      const framework::DDim &dy_dims = dy->dims();
593 594
      ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
          ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
Y
Yu Yang 已提交
595 596
    }
  }
597
}
Y
Yu Yang 已提交
598

599
// Deprecated
Q
QI JUN 已提交
600
template <typename DeviceContext, typename T, typename functor,
F
fengjiayi 已提交
601
          typename broadcastfunctor, typename broadcast2functor>
602 603 604 605 606 607 608
void ElementwiseGradCompute(const framework::ExecutionContext &ctx,
                            const framework::Tensor *x,
                            const framework::Tensor *y,
                            const framework::Tensor *out,
                            const framework::Tensor *dout, int axis,
                            framework::Tensor *dx, framework::Tensor *dy) {
  auto &place = *ctx.template device_context<DeviceContext>().eigen_device();
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

  auto x_dims = x->dims();
  auto y_dims = y->dims();

  if (dx) {
    dx->mutable_data<T>(ctx.GetPlace());
  }
  if (dy) {
    dy->mutable_data<T>(ctx.GetPlace());
  }

  if (x_dims == y_dims) {
    functor f;
    f(place, x, y, out, dx, dy, dout);
    return;
  }

  axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
627
  trim_trailing_singular_dims(y_dims);
628
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
629 630

  int pre, n, post;
631
  get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
632 633 634 635 636 637 638 639 640 641 642

  if (post == 1) {
    broadcastfunctor f;
    f(place, x, y, out, dx, dy, dout, pre, n);
    return;
  } else {
    broadcast2functor f;
    f(place, x, y, out, dx, dy, dout, pre, n, post);
    return;
  }
}
F
fengjiayi 已提交
643

644 645
template <typename Functor, typename DeviceContext, typename T,
          typename OutType = T>
D
dzhwinter 已提交
646

647 648 649 650
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
                          const framework::Tensor *x,
                          const framework::Tensor *y, int axis, Functor func,
                          framework::Tensor *z) {
651
  TransformFunctor<Functor, T, DeviceContext, OutType> functor(
C
chengduoZH 已提交
652
      x, y, z, ctx.template device_context<DeviceContext>(), func);
F
fengjiayi 已提交
653
  auto x_dims = x->dims();
654 655
  auto y_dims_untrimed = y->dims();
  PADDLE_ENFORCE_GE(x_dims.size(), y_dims_untrimed.size(),
F
fengjiayi 已提交
656 657
                    "Rank of first input must >= rank of second input.");

658
  if (x_dims == y_dims_untrimed) {
F
fengjiayi 已提交
659 660 661 662
    functor.Run();
    return;
  }

663
  axis = (axis == -1 ? x_dims.size() - y_dims_untrimed.size() : axis);
F
fengjiayi 已提交
664 665
  PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                 "Axis should be in range [0, x_dims)");
666
  auto y_dims = trim_trailing_singular_dims(y_dims_untrimed);
667
  axis = (y_dims.size() == 0) ? x_dims.size() : axis;
F
fengjiayi 已提交
668 669

  int pre, n, post;
670
  get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
F
fengjiayi 已提交
671 672 673 674 675 676 677 678 679
  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
  }
}

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
// FusedElemwiseAndAct
// --- forward
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
struct FusedElemwiseAndActNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    T y_val = y_[i];
    T x_val = x_[i];
    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
      intermediate_out_[i] = intermeidiate_out;
      out_[i] =
          compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out_[i] = compound_functor_.GetOut(x_val, y_val);
    }
  }

  const T *x_;
  const T *y_;
  CompoundFunctor compound_functor_;
  T *out_;
  T *intermediate_out_;
};

// FusedElemwiseAndActBroadcast1:
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
                                             CompoundFunctor compound_functor,
                                             int h, int w, T *out,
                                             T *intermediate_out) {
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      T y_val = BcastY ? y[j] : y[offset];
      T x_val = BcastY ? x[offset] : x[j];
      int64_t intermediate_out_offset;
      if (KeepIntermediateOut) {
        T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

        if (SameShapeOfIntermediateOutAndOut) {
          // for the case of f1(f2(x, y))
          intermediate_out_offset = offset;
        } else if (BcastY) {
          intermediate_out_offset = j;
        } else {
          intermediate_out_offset = offset;
        }

        intermediate_out[intermediate_out_offset] = intermeidiate_out;
        out[offset] =
            compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
      } else {
        out[offset] = compound_functor.GetOut(x_val, y_val);
      }
    }
  }
}

// FusedElemwiseAndActBroadcast2
// In this case, X and Y can be reshaped to a matrix.
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
// pre = 2, n = 12, post = 5
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
                                             int n, int post,
                                             CompoundFunctor compound_functor,
                                             T *out, T *intermediate_out) {
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        T y_val = BcastY ? y[j] : y[offset];
        T x_val = BcastY ? x[offset] : x[j];
        int64_t intermediate_out_offset;

        if (KeepIntermediateOut) {
          T intermeidiate_out =
              compound_functor.GetIntermediateOut(x_val, y_val);

          if (SameShapeOfIntermediateOutAndOut) {
            // for the case of f1(f2(x, y))
            intermediate_out_offset = offset;
          } else if (BcastY) {
            intermediate_out_offset = j;
          } else {
            intermediate_out_offset = offset;
          }

          intermediate_out[intermediate_out_offset] = intermeidiate_out;
          out[offset] = compound_functor.GetOutUseIntermediateOut(
              x_val, intermeidiate_out);
        } else {
          out[offset] = compound_functor.GetOut(x_val, y_val);
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
    const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
    T *out, T *intermediate_out) {
  int j = blockIdx.x;
  int i = threadIdx.x;

  while (i < h) {
    int offset = i * w + j;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    i += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast1CUDA(cudaStream_t stream, const T *x,
                                              const T *y,
                                              CompoundFunctor compound_functor,
                                              int h, int w, T *out,
                                              T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActBroadcast1CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, h, w, compound_functor, out, intermediate_out);
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
    const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
    int post, T *out, T *intermediate_out) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  while (true) {
    int i = tid / post;
    int k = tid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    T y_val = BcastY ? y[j] : y[offset];
    T x_val = BcastY ? x[offset] : x[j];
    int64_t intermediate_out_offset;

    if (KeepIntermediateOut) {
      T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);

      if (SameShapeOfIntermediateOutAndOut) {
        // for the case of f1(f2(x, y))
        intermediate_out_offset = offset;
      } else if (BcastY) {
        intermediate_out_offset = j;
      } else {
        intermediate_out_offset = offset;
      }

      intermediate_out[intermediate_out_offset] = intermeidiate_out;
      out[offset] =
          compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
    } else {
      out[offset] = compound_functor.GetOut(x_val, y_val);
    }

    tid += ELEMWISE_MAX_BLOCK_DIM;
  }
}

template <typename T, typename CompoundFunctor, bool BcastY,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActBroadcast2CUDA(cudaStream_t stream, const T *x,
                                              const T *y, int pre, int n,
                                              int post,
                                              CompoundFunctor compound_functor,
                                              T *out, T *intermediate_out) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;

  FusedElemwiseAndActBroadcast2CUDAKernel<
      T, CompoundFunctor, BcastY, KeepIntermediateOut,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, compound_functor, pre, n, post, out, intermediate_out);
}

#endif

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut>
void FusedElemwiseAndActComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::Tensor &x, const framework::Tensor &y,
    CompoundFunctor compound_functor, framework::Tensor *out,
    framework::Tensor *intermediate_out) {
  size_t N = static_cast<size_t>(framework::product(x_dim));

  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);

  for_range(
      FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
          x.data<T>(), y.data<T>(), compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace())});
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool BcastY, bool KeepIntermediateOut,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
    const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
    framework::Tensor *out, framework::Tensor *intermediate_out) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

  int pre, n, post;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);

  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), compound_functor, h, w,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
                                        KeepIntermediateOut,
                                        SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
          y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
                                       KeepIntermediateOut,
                                       SameShapeOfIntermediateOutAndOut>(
          x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
          out->mutable_data<T>(ctx.GetPlace()),
          intermediate_out == nullptr
              ? nullptr
              : intermediate_out->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

// --- backward
template <typename T, typename DX_OP, typename DY_OP, bool UseIntermediateOut>
struct FusedElemwiseAndActGradNoBroadcast {
  HOSTDEVICE void operator()(size_t i) {
    if (dx_ != nullptr) {
      dx_[i] = UseIntermediateOut ? dx_op_(x_[i], y_[i], intermediate_out_[i],
                                           out_[i], dout_[i])
                                  : dx_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
    if (dy_ != nullptr) {
      dy_[i] = UseIntermediateOut ? dy_op_(x_[i], y_[i], intermediate_out_[i],
                                           out_[i], dout_[i])
                                  : dy_op_(x_[i], y_[i], out_[i], dout_[i]);
    }
  }

  const T *x_;
  const T *y_;
  const T *intermediate_out_;
  const T *out_;
  const T *dout_;
  DX_OP dx_op_;
  DY_OP dy_op_;
  T *dx_;
  T *dy_;
};

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          bool UseIntermediateOut>
void FusedElemwiseAndActGradComputeNoBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
    framework::Tensor *dx, framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
  size_t N = static_cast<size_t>(framework::product(x_dim));
  platform::ForRange<DeviceContext> for_range(
      ctx.template device_context<DeviceContext>(), N);
  for_range(
      FusedElemwiseAndActGradNoBroadcast<T, DX_OP, DY_OP, UseIntermediateOut>{
          x->data<T>(), y->data<T>(),
          intermediate_out ? intermediate_out->data<T>() : nullptr,
          out->data<T>(), dout->data<T>(), dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
}

template <typename T, typename DX_OP, typename DY_OP, bool UseIntermediateOut,
          bool BcastY, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CPU(const T *x, const T *y,
                                                 const T *intermediate_out,
                                                 const T *out, const T *dout,
                                                 int h, int w, DX_OP dx_op,
                                                 DY_OP dy_op, T *dx, T *dy) {
  int64_t tmp_out_idx, x_idx, y_idx;
  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      int offset = i * w + j;

      tmp_out_idx = BcastY ? j : offset;
      y_idx = BcastY ? j : offset;
      x_idx = BcastY ? offset : j;

      if (SameShapeOfIntermediateOutAndOut) {
        tmp_out_idx = offset;
      }

      if (dx != nullptr) {
        T tmp = UseIntermediateOut
                    ? dx_op(x[x_idx], y[y_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                    : dx_op(x[x_idx], y[y_idx], out[offset], dout[offset]);

        if (BcastY) {
          dx[x_idx] = tmp;
        } else {
          if (i == 0) {
            dx[x_idx] = tmp;
          } else {
            dx[x_idx] += tmp;
          }
        }
      }
      if (dy != nullptr) {
        T tmp = UseIntermediateOut
                    ? dy_op(x[x_idx], y[y_idx], intermediate_out[tmp_out_idx],
                            out[offset], dout[offset])
                    : dy_op(x[x_idx], y[y_idx], out[offset], dout[offset]);
        if (BcastY) {
          if (i == 0) {
            dy[y_idx] = tmp;
          } else {
            dy[y_idx] += tmp;
          }
        } else {
          dy[y_idx] = tmp;
        }
      }
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP, bool UseIntermediateOut,
          bool BcastY, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CPU(const T *x, const T *y,
                                                 const T *intermediate_out,
                                                 const T *out, const T *dout,
                                                 int pre, int n, int post,
                                                 DX_OP dx_op, DY_OP dy_op,
                                                 T *dx, T *dy) {
  int64_t tmp_out_idx, x_idx, y_idx;
  for (int i = 0; i < pre; ++i) {
    for (int j = 0; j < n; ++j) {
      for (int k = 0; k < post; ++k) {
        int offset = i * n * post + j * post + k;

        tmp_out_idx = BcastY ? j : offset;
        y_idx = BcastY ? j : offset;
        x_idx = BcastY ? offset : j;

        if (SameShapeOfIntermediateOutAndOut) {
          tmp_out_idx = offset;
        }

        if (dx != nullptr) {
          T tmp = UseIntermediateOut
                      ? dx_op(x[x_idx], y[y_idx], intermediate_out[tmp_out_idx],
                              out[offset], dout[offset])
                      : dx_op(x[x_idx], y[y_idx], out[offset], dout[offset]);

          if (BcastY) {
            dx[x_idx] = tmp;
          } else {
            if (i == 0 && k == 0) {
              dx[x_idx] = tmp;
            } else {
              dx[x_idx] += tmp;
            }
          }
        }
        if (dy != nullptr) {
          T tmp = UseIntermediateOut
                      ? dy_op(x[x_idx], y[y_idx], intermediate_out[tmp_out_idx],
                              out[offset], dout[offset])
                      : dy_op(x[x_idx], y[y_idx], out[offset], dout[offset]);
          if (BcastY) {
            if (i == 0 && k == 0) {
              dy[y_idx] = tmp;
            } else {
              dy[y_idx] += tmp;
            }
          } else {
            dy[y_idx] = tmp;
          }
        }
      }
    }
  }
}

#ifdef __NVCC__
template <typename T, typename DX_OP, typename DY_OP, bool UseIntermediateOut,
          bool BcastY, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
  int j = blockIdx.x;
  int i = threadIdx.x;
  int tid = threadIdx.x;
  T val(0);
  int64_t tmp_out_idx, x_idx, y_idx;

  do {
    int offset = i * w + j;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
      T tmp = UseIntermediateOut
                  ? dx_op(x[x_idx], y[y_idx], intermediate_out[tmp_out_idx],
                          out[offset], dout[offset])
                  : dx_op(x[x_idx], y[y_idx], out[offset], dout[offset]);

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
      T tmp = UseIntermediateOut
                  ? dy_op(x[x_idx], y[y_idx], intermediate_out[tmp_out_idx],
                          out[offset], dout[offset])
                  : dy_op(x[x_idx], y[y_idx], out[offset], dout[offset]);
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }

    i += ELEMWISE_MAX_BLOCK_DIM;
  } while (i < h);

  if (BcastY) {
    if (dy) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP, bool UseIntermediateOut,
          bool BcastY, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast1CUDA(cudaStream_t stream,
                                                  const T *x, const T *y,
                                                  const T *intermediate_out,
                                                  const T *out, const T *dout,
                                                  int h, int w, DX_OP dx_op,
                                                  DY_OP dy_op, T *dx, T *dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
  int gird_size = w;
  FusedElemwiseAndActGradBroadcast1CUDAKernel<
      T, DX_OP, DY_OP, UseIntermediateOut, BcastY,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dx, dy);
}

template <typename T, typename DX_OP, typename DY_OP, bool UseIntermediateOut,
          bool BcastY, bool SameShapeOfIntermediateOutAndOut>
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
    const T *x, const T *y, const T *intermediate_out, const T *out,
    const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op, T *dx,
    T *dy) {
  int tid = threadIdx.x;
  int j = blockIdx.x;

  T val(0);
  int ttid = tid;
  int64_t tmp_out_idx, x_idx, y_idx;
  while (true) {
    int i = ttid / post;
    int k = ttid % post;
    if (i >= pre) break;

    int offset = i * n * post + j * post + k;

    tmp_out_idx = BcastY ? j : offset;
    y_idx = BcastY ? j : offset;
    x_idx = BcastY ? offset : j;

    if (SameShapeOfIntermediateOutAndOut) {
      tmp_out_idx = offset;
    }

    if (dx != nullptr) {
      T tmp = UseIntermediateOut
                  ? dx_op(x[x_idx], y[y_idx], intermediate_out[tmp_out_idx],
                          out[offset], dout[offset])
                  : dx_op(x[x_idx], y[y_idx], out[offset], dout[offset]);

      if (BcastY) {
        dx[x_idx] = tmp;
      } else {
        val += tmp;
      }
    }
    if (dy != nullptr) {
      T tmp = UseIntermediateOut
                  ? dy_op(x[x_idx], y[y_idx], intermediate_out[tmp_out_idx],
                          out[offset], dout[offset])
                  : dy_op(x[x_idx], y[y_idx], out[offset], dout[offset]);
      if (BcastY) {
        val += tmp;
      } else {
        dy[y_idx] = tmp;
      }
    }

    ttid += ELEMWISE_MAX_BLOCK_DIM;
  }

  if (BcastY) {
    if (dy) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dy[j] = val;
      }
    }
  } else {
    if (dx) {
      int h = pre * post;
      h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
      val = paddle::platform::reduceSum(val, tid, h);
      if (threadIdx.x == 0) {
        dx[j] = val;
      }
    }
  }
}

template <typename T, typename DX_OP, typename DY_OP, bool UseIntermediateOut,
          bool BcastY, bool SameShapeOfIntermediateOutAndOut>
static void FusedElemwiseAndActGradBroadcast2CUDA(
    cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
    const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
    DY_OP dy_op, T *dx, T *dy) {
  int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
  int gird_size = n;
  FusedElemwiseAndActGradBroadcast2CUDAKernel<
      T, DX_OP, DY_OP, UseIntermediateOut, BcastY,
      SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
      x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op, dx, dy);
}
#endif

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          bool UseIntermediateOut, bool BcastY,
          bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeWithBroadcast(
    const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
    const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *intermediate_out,
    const framework::Tensor *out, const framework::Tensor *dout, int axis,
    framework::Tensor *dx, framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
  axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
  auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
  axis = (y_dim.size() == 0) ? x_dim.size() : axis;

  int pre, n, post;
  get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
  if (post == 1) {
    int h = pre;
    int w = n;
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, UseIntermediateOut,
                                            BcastY,
                                            SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x->data<T>(),
          y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, UseIntermediateOut,
                                           BcastY,
                                           SameShapeOfIntermediateOutAndOut>(
          x->data<T>(), y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  } else {
    if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef __NVCC__
      FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, UseIntermediateOut,
                                            BcastY,
                                            SameShapeOfIntermediateOutAndOut>(
          ctx.template device_context<DeviceContext>().stream(), x->data<T>(),
          y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
#endif
    } else {
      FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, UseIntermediateOut,
                                           BcastY,
                                           SameShapeOfIntermediateOutAndOut>(
          x->data<T>(), y->data<T>(),
          intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
          out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
          dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
          dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
    }
  }
}

template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
          bool UseIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActGradComputeEx(
    const framework::ExecutionContext &ctx, const framework::Tensor *x,
    const framework::Tensor *y, const framework::Tensor *out,
    const framework::Tensor *intermediate_out, const framework::Tensor *dout,
    int axis, framework::Tensor *dx, framework::Tensor *dy, DX_OP dx_op,
    DY_OP dy_op) {
  const framework::DDim &x_dim = x->dims();
  const framework::DDim &y_dim = y->dims();
  if (UseIntermediateOut) {
    PADDLE_ENFORCE(intermediate_out, "intermediate_out should not be nullptr");
  }
  if (x_dim == y_dim) {
    FusedElemwiseAndActGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP,
                                              UseIntermediateOut>(
        ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
        dx_op, dy_op);
  } else {  // Y is a scalar
    bool bcast_y = x_dim.size() >= y_dim.size();
    if (x_dim.size() == y_dim.size()) {
      for (int i = 0; i < x_dim.size(); ++i) {
        if (x_dim[i] < y_dim[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      FusedElemwiseAndActGradComputeWithBroadcast<
          DeviceContext, T, DX_OP, DY_OP, UseIntermediateOut, true /*BcastY*/,
          SameShapeOfIntermediateOutAndOut>(ctx, x_dim, y_dim, x, y,
                                            intermediate_out, out, dout, axis,
                                            dx, dy, dx_op, dy_op);
    } else {
      FusedElemwiseAndActGradComputeWithBroadcast<
          DeviceContext, T, DX_OP, DY_OP, UseIntermediateOut, false /*BcastY*/,
          SameShapeOfIntermediateOutAndOut>(ctx, y_dim, x_dim, x, y,
                                            intermediate_out, out, dout, axis,
                                            dx, dy, dx_op, dy_op);
    }
  }
}

template <typename DeviceContext, typename T, typename CompoundFunctor,
          bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
                                  const framework::Tensor &x,
                                  const framework::Tensor &y, int axis,
                                  CompoundFunctor compound_functor,
                                  framework::Tensor *out,
                                  framework::Tensor *intermediate_out) {
  if (KeepIntermediateOut) {
    PADDLE_ENFORCE(intermediate_out,
                   "The keep_intermediate_value is opened, "
                   "intermediate_out should not be nullptr.");
  }

  const framework::DDim &x_dim = x.dims();
  const framework::DDim &y_dim = y.dims();
  if (x.dims() == y.dims()) {
    FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
                                          KeepIntermediateOut>(
        ctx, x_dim, x, y, compound_functor, out, intermediate_out);
  } else {
    // Whether the shape of Y is a continuous subsequence of X,
    // For more information please refer to the op's introduction.
    bool bcast_y = x.dims().size() >= y.dims().size();
    if (x.dims().size() == y.dims().size()) {
      for (int i = 0; i < x.dims().size(); ++i) {
        if (x.dims()[i] < y.dims()[i]) {
          bcast_y = false;
          break;
        }
      }
    }

    // z = f1(x, f2(y))
    // z = f1(f2(x, y))
    if (bcast_y) {  // Y should be broadcast.
      // In this case,
      // for 'f2(y)', the shape of intermediate_out should be equal to the shape
      // of Y.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of X.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, true /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    } else {
      // In this case,
      // for 'f2(y)', the shape of intermediate_out should be equal to the shape
      // of Out.
      // for 'f2(x, y)', the shape of intermediate_out should be equal to the
      // shape of Out.
      // the shape of Out should be equal to the shape of Y.
      FusedElemwiseAndActComputeWithBroadcast<
          DeviceContext, T, CompoundFunctor, false /*BcastY*/,
          KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
          ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
          intermediate_out);
    }
  }
}
1498 1499
}  // namespace operators
}  // namespace paddle