tensor.py 9.3 KB
Newer Older
Y
Yu Yang 已提交
1
from ..layer_helper import LayerHelper
2
from ..param_attr import ParamAttr
X
xuwei06 已提交
3 4 5 6
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
from ..core import DataType
import numpy
Y
Yu Yang 已提交
7 8

__all__ = [
9
    'create_tensor', 'create_parameter', 'cast', 'concat', 'sums', 'assign',
Y
Yu Yang 已提交
10 11 12 13
    'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]


14
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
15 16 17 18
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def create_parameter(shape,
                     dtype,
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
    helper = LayerHelper("create_parameter")
    if attr is None:
        attr = ParamAttr()
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


46
def cast(x, dtype):
Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


62
def concat(input, axis=0):
Y
Yu Yang 已提交
63
    """
64 65 66
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
67
    and returns that as the output.
68 69 70 71 72 73 74 75 76 77 78

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
79 80 81 82 83 84 85 86 87 88 89
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


90
def sums(input, out=None):
K
kavyasrinet 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
          mean_a0 = layers.mean(x=a0)
          mean_a1 = layers.mean(x=a1)
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
113 114 115 116 117 118 119 120
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


121
def assign(input, output):
122 123 124 125 126 127
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
128
        input(Variable|numpy.ndarray): The source variable
129 130 131 132 133 134 135 136 137 138 139
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
140
    helper = LayerHelper('assign', **locals())
X
xuwei06 已提交
141 142 143 144 145 146 147 148 149 150
    if isinstance(input, Variable):
        helper.append_op(
            type='scale',
            inputs={'X': [input]},
            outputs={'Out': [output]},
            attrs={'scale': 1.0})
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == DataType.FP32:
            value_name = "fp32_values"
151
            values = [float(v) for v in input.flat]
X
xuwei06 已提交
152 153
        elif dtype == DataType.INT32:
            value_name = "int32_values"
154
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
155 156
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
157 158 159
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
160 161 162 163 164 165 166

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
167
                value_name: values
X
xuwei06 已提交
168 169 170 171
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
172 173 174
    return output


175
def fill_constant(shape, dtype, value, out=None):
Y
Yu Yang 已提交
176
    """
177 178
    **fill_constant**

K
kavyasrinet 已提交
179
    This function creates a tensor of specified *shape* and
180
    *dtype*, and initializes this with a constant supplied in *value*.
K
kavyasrinet 已提交
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        out(Variable): Output Variable to initialize

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    """
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
217
                                  output_dim_idx=0):
218 219 220
    """
    **fill_constant_batch_size_like**

K
kavyasrinet 已提交
221 222 223
    This function creates a tensor of specified *shape*, *dtype* and batch size,
    and initializes this with a constant supplied in *value*. The batch size is
    obtained from the `input` tensor.
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

241 242
          data = fluid.layers.fill_constant_batch_size_like(
              input=like, shape=[1], value=0, dtype='int64')
243
    """
Y
Yu Yang 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


261
def ones(shape, dtype):
Y
Yu Yang 已提交
262
    """
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
281 282 283 284
    """
    return fill_constant(value=1.0, **locals())


285
def zeros(shape, dtype):
Y
Yu Yang 已提交
286
    """
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
305 306
    """
    return fill_constant(value=0.0, **locals())