MKLDNNConvLayer.cpp 13.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNConvLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/utils/Logging.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

REGISTER_LAYER(mkldnn_conv, MKLDNNConvLayer);

bool MKLDNNConvLayer::init(const LayerMap& layerMap,
                           const ParameterMap& parameterMap) {
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
    return false;
  }
31
  CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet";
T
tensor-tang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(config_.shared_biases()) << "Only support shared biases yet";

  oc_ = config_.num_filters();
  const ConvConfig& conf = config_.inputs(0).conv_conf();
  ic_ = conf.channels();
  fw_ = conf.filter_size();
  fh_ = conf.filter_size_y();
  pw_ = conf.padding();
  ph_ = conf.padding_y();
  dw_ = conf.dilation();
  dh_ = conf.dilation_y();
  sw_ = conf.stride();
  sh_ = conf.stride_y();
  gp_ = conf.groups();
47
  oh_ = conf.output_y();
T
tensor-tang 已提交
48
  ow_ = conf.output_x();
49
  ih_ = conf.img_size_y();
T
tensor-tang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  iw_ = conf.img_size();
  caffeMode_ = conf.caffe_mode();
  CHECK(caffeMode_) << "Only support caffe mode yet";
  CHECK(dh_ == 1 && dw_ == 1) << "Only support dilation 1 yet";
  // check group setting
  CHECK_EQ((oc_ / gp_) * gp_, oc_) << "group is indivisible for oc";
  CHECK_EQ((ic_ / gp_) * gp_, ic_) << "group is indivisible for ic";

  // create weight
  size_t height = oc_ / gp_;
  size_t width = ic_ * fh_ * fw_;
  CHECK_EQ(parameters_[0]->getSize(), height * width);
  weight_ =
      std::unique_ptr<Weight>(new Weight(height, width, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
T
tensor-tang 已提交
67
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_, 0));
T
tensor-tang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  }
  return true;
}

void MKLDNNConvLayer::convertWeightsFromPaddle() {
  if (hasInitedWgt_) {
    return;
  }

  CHECK(wgtVal_) << "should have been initialized";
  // the paddle weight format is oihw or goihw
  auto targetDim = wgtVal_->getDims();
  auto srcFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
  hasInitedWgt_ = true;
}

void MKLDNNConvLayer::convertWeightsToPaddle() {
  CHECK(wgtVal_) << "should have been initialized";
  auto targetDim = wgtVal_->getDims();
  auto dstFmt = (gp_ == 1) ? memory::format::oihw : memory::format::goihw;
  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
}

void MKLDNNConvLayer::reshape(
93
    int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
T
tensor-tang 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  reshapeInput(bs, ih, iw);

  // cal output sizes
  // oc can not be changed
  int fh = (fh_ - 1) * dh_ + 1;
  int fw = (fw_ - 1) * dw_ + 1;
  oh = outputSize(ih, fh, ph_, sh_, caffeMode_);
  ow = outputSize(iw, fw, pw_, sw_, caffeMode_);

  reshapeOutput(oh, ow);
  resizeOutput(bs, oc * oh * ow);
}

void MKLDNNConvLayer::resetFwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& out) {
110 111
  resetFwdPD(fwdPD_);

112
  resetFwdBuffers(fwdPD_, in, wgtVal_, biasVal_, out);
113

114
  resetFwdPipeline(pipeline, fwdPD_, in, wgtVal_, biasVal_, out);
115 116 117 118 119 120 121 122 123 124 125 126
}

void MKLDNNConvLayer::resetBwd(std::vector<primitive>& pipeline,
                               MKLDNNMatrixPtr& in,
                               MKLDNNMatrixPtr& out) {
  std::shared_ptr<conv_bwdWgt::primitive_desc> bwdWgtPD;
  std::shared_ptr<conv_bwdData::primitive_desc> bwdDataPD;

  resetBwdWgtPD(bwdWgtPD);

  resetBwdDataPD(bwdDataPD);

127
  resetBwdBuffers(bwdWgtPD, bwdDataPD, in, wgtGrad_, biasGrad_, out);
T
tensor-tang 已提交
128

129
  resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgtGrad_, biasGrad_, out);
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
}

void MKLDNNConvLayer::updateWeights(const UpdateCallback& callback) {
  weight_->getParameterPtr()->incUpdate(callback);
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

void MKLDNNConvLayer::loadConvSettings(memory::dims& wgt,
                                       memory::dims& bias,
                                       memory::dims& stride,
                                       memory::dims& dilation,
                                       memory::dims& padL,
                                       memory::dims& padR) {
  wgt = (gp_ == 1) ? memory::dims{oc_, ic_, fh_, fw_}
                   : memory::dims{gp_, oc_ / gp_, ic_ / gp_, fh_, fw_};
  bias = memory::dims{oc_};
  stride = memory::dims{sh_, sw_};
  padL = memory::dims{ph_, pw_};
  padR = getPaddingR();
  // note: mkldnn dilation start from 0
  dilation = memory::dims{dh_ - 1, dw_ - 1};
}

void MKLDNNConvLayer::resetFwdPD(
    std::shared_ptr<conv_fwd::primitive_desc>& pd) {
T
tensor-tang 已提交
157 158 159
  // dims for conv
  memory::dims inDims = memory::dims{bs_, ic_, ih_, iw_};
  memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
160 161
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
T
tensor-tang 已提交
162

163 164
  prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring
                                        : prop_kind::forward_training;
T
tensor-tang 已提交
165 166 167
  algorithm algo = algorithm::convolution_direct;
  padding_kind padKind = padding_kind::zero;
  conv_fwd::desc fwdDesc =
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
      biases_ && biases_->getW()
          ? conv_fwd::desc(pk,
                           algo,
                           MKLDNNMatrix::createMemoryDesc(inDims),
                           MKLDNNMatrix::createMemoryDesc(wgtDims),
                           MKLDNNMatrix::createMemoryDesc(biasDims),
                           MKLDNNMatrix::createMemoryDesc(outDims),
                           strides,
                           dilations,
                           padL,
                           padR,
                           padKind)
          : conv_fwd::desc(pk,
                           algo,
                           MKLDNNMatrix::createMemoryDesc(inDims),
                           MKLDNNMatrix::createMemoryDesc(wgtDims),
                           MKLDNNMatrix::createMemoryDesc(outDims),
                           strides,
                           dilations,
                           padL,
                           padR,
                           padKind);
  pd.reset(new conv_fwd::primitive_desc(fwdDesc, engine_));
}

void MKLDNNConvLayer::resetFwdBuffers(
    std::shared_ptr<conv_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(pd);
200 201 202 203
  resetInValue(
      in, std::make_shared<memory::primitive_desc>(pd->src_primitive_desc()));

  resetOutValue(out, pd->dst_primitive_desc());
204

205
  resetWithMatrix(wgt, weight_->getW(), pd->weights_primitive_desc());
206

T
tensor-tang 已提交
207 208 209 210
  if (biases_ && biases_->getW()) {
    resetWithMatrix(bias, biases_->getW(), pd->bias_primitive_desc());
  } else {
    bias = nullptr;
211
  }
212 213 214 215 216 217 218 219 220 221 222 223 224
}

void MKLDNNConvLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<conv_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  if (bias) {
    fwd_.reset(new conv_fwd(*pd, *in, *wgt, *bias, *out));
  } else {
    fwd_.reset(new conv_fwd(*pd, *in, *wgt, *out));
T
tensor-tang 已提交
225
  }
226
  pipeline.push_back(*fwd_);
T
tensor-tang 已提交
227 228
}

229 230 231 232
void MKLDNNConvLayer::resetBwdWgtPD(
    std::shared_ptr<conv_bwdWgt::primitive_desc>& pd) {
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
T
tensor-tang 已提交
233

234
  // create backward weight using input, output and weight value memory desc
235 236
  CHECK(inVal_) << "Should have internal input value";
  CHECK(outVal_) << "Should have internal output value";
T
tensor-tang 已提交
237 238 239
  CHECK(wgtVal_) << "Should have weight value";
  algorithm algo = algorithm::convolution_direct;
  padding_kind padKind = padding_kind::zero;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  auto bwdWgtDesc = biasVal_ != nullptr
                        ? conv_bwdWgt::desc(algo,
                                            inVal_->getMemoryDesc(),
                                            wgtVal_->getMemoryDesc(),
                                            biasVal_->getMemoryDesc(),
                                            outVal_->getMemoryDesc(),
                                            strides,
                                            padL,
                                            padR,
                                            padKind)
                        : conv_bwdWgt::desc(algo,
                                            inVal_->getMemoryDesc(),
                                            wgtVal_->getMemoryDesc(),
                                            outVal_->getMemoryDesc(),
                                            strides,
                                            padL,
                                            padR,
                                            padKind);
  pd.reset(new conv_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
259 260 261 262 263 264 265 266 267
  CHECK_PRIMITIVE_DESC_EQ(inVal_, pd->src_primitive_desc());
  CHECK_PRIMITIVE_DESC_EQ(
      outVal_,
      pd->diff_dst_primitive_desc(),
      "primitive desc of out value and grad should be equal");
  CHECK_PRIMITIVE_DESC_EQ(
      wgtVal_,
      pd->diff_weights_primitive_desc(),
      "primitive desc of weight value and grad should be equal");
268
}
T
tensor-tang 已提交
269

270 271
void MKLDNNConvLayer::resetBwdDataPD(
    std::shared_ptr<conv_bwdData::primitive_desc>& pd) {
272
  pd = nullptr;
273 274
  if (inputLayers_[0]->getOutput().grad == nullptr) {
    return;
T
tensor-tang 已提交
275 276
  }

277 278
  memory::dims wgtDims, biasDims, strides, dilations, padL, padR;
  loadConvSettings(wgtDims, biasDims, strides, dilations, padL, padR);
279 280
  CHECK(inVal_) << "Should have internal input value";
  CHECK(outVal_) << "Should have internal output value";
281 282 283 284 285 286 287 288 289 290 291
  // create backward data using input and output value memory desc
  // but using weight memory desc with any format
  auto bwdDataDesc = conv_bwdData::desc(algorithm::convolution_direct,
                                        inVal_->getMemoryDesc(),
                                        MKLDNNMatrix::createMemoryDesc(wgtDims),
                                        outVal_->getMemoryDesc(),
                                        strides,
                                        padL,
                                        padR,
                                        padding_kind::zero);
  pd.reset(new conv_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
292 293 294 295 296 297 298 299
  CHECK_PRIMITIVE_DESC_EQ(
      inVal_,
      pd->diff_src_primitive_desc(),
      "primitive desc of in value and grad should be equal");
  CHECK_PRIMITIVE_DESC_EQ(
      outVal_,
      pd->diff_dst_primitive_desc(),
      "primitive desc of out value and grad should be equal");
300 301 302 303 304 305 306 307 308 309
}

void MKLDNNConvLayer::resetBwdBuffers(
    std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(wgtPD);
310
  resetOutGrad(out, wgtPD->diff_dst_primitive_desc());
311

312 313
  resetWithMatrix(
      wgt, weight_->getWGrad(), wgtPD->diff_weights_primitive_desc());
T
tensor-tang 已提交
314 315 316 317
  CHECK_PRIMITIVE_DESC_EQ(
      wgtVal_,
      wgt->getPrimitiveDesc(),
      "primitive desc of weight grad and value should be equal");
318

319 320 321 322
  bias = nullptr;
  if (biases_ && biases_->getWGrad()) {
    resetWithMatrix(
        bias, biases_->getWGrad(), wgtPD->diff_bias_primitive_desc());
T
tensor-tang 已提交
323 324 325 326 327
    CHECK(bias);
    CHECK_PRIMITIVE_DESC_EQ(
        biasVal_,
        bias->getPrimitiveDesc(),
        "primitive desc of bias grad and value should be equal");
328
  }
329

330 331 332 333
  if (dataPD == nullptr) {
    return;
  }
  resetInGrad(in, dataPD->diff_src_primitive_desc());
334 335 336 337 338 339 340 341 342 343 344
  resetWgtValBwdData(dataPD, wgtValBwdData_);
}

void MKLDNNConvLayer::resetBwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD,
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
345
  CHECK(inVal_);
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
  // add bwdWgt handle
  if (bias) {
    bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt, *bias));
  } else {
    bwdWgt_.reset(new conv_bwdWgt(*wgtPD, *inVal_, *out, *wgt));
  }
  pipeline.push_back(*bwdWgt_);

  if (dataPD == nullptr) {
    return;
  }
  if (cvtWgtVal_) {
    pipeline.push_back(*cvtWgtVal_);
  }
  // add bwdData handle
  CHECK(wgtValBwdData_) << "Should have weight memory";
  bwdData_.reset(new conv_bwdData(*dataPD, *out, *wgtValBwdData_, *in));
  pipeline.push_back(*bwdData_);
}
T
tensor-tang 已提交
365

366 367 368 369 370 371 372 373
void MKLDNNConvLayer::resetWgtValBwdData(
    std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
    MKLDNNMatrixPtr& wgt) {
  if (dataPD == nullptr) {
    return;
  }

  // create new weight value for backward data, and create reorder if necessary
T
tensor-tang 已提交
374
  // since the primitive_desc would be different with wgtVal_
375 376
  CHECK(wgtVal_) << "should have weight value";
  if (dataPD->weights_primitive_desc() != wgtVal_->getPrimitiveDesc()) {
377
    wgtValBwdData_ = MKLDNNMatrix::create(dataPD->weights_primitive_desc());
T
tensor-tang 已提交
378 379 380 381 382
    cvtWgtVal_ = MKLDNNMatrix::createReorder(wgtVal_, wgtValBwdData_);
    CHECK(cvtWgtVal_);
  } else {
    wgtValBwdData_ = wgtVal_;
  }
T
tensor-tang 已提交
383
  VLOG(MKLDNN_FMTS) << "weight value format for backward data: "
T
tensor-tang 已提交
384 385 386 387
                    << wgtValBwdData_->getFormat();
}

}  // namespace paddle