distribute_transpiler_simple.py 9.2 KB
Newer Older
T
typhoonzero 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper


def hash_name_to_server(params_grads, pserver_endpoints):
    """
    :param param_grads:
    :return: a map of pserver endpoint -> 
                    params -> [param list]
                    grads  -> [grad list]
    """

    def _hash_param(param_name, total):
        return hash(param_name) % total

    param_grad_map = dict()
    for param, grad in params_grads:
        if param.trainable is True and grad is not None:
            server_id = _hash_param(param.name, len(pserver_endpoints))
            server_for_param = pserver_endpoints[server_id]
            if not param_grad_map.has_key(server_for_param):
                param_grad_map[server_for_param] = {"params": [], "grads": []}
            param_grad_map[server_for_param]["params"].append(param)
            param_grad_map[server_for_param]["grads"].append(grad)

    return param_grad_map


def round_robin(params_grads, pserver_endpoints):
    assert (len(params_grads) > len(pserver_endpoints))

    param_grad_map = dict()
    pserver_idx = 0
    for param, grad in params_grads:
        if param.trainable is True:
            server_for_param = pserver_endpoints[pserver_idx]
            if not param_grad_map.has_key(server_for_param):
                param_grad_map[server_for_param] = {"params": [], "grads": []}

            param_grad_map[server_for_param]["params"].append(param)
            param_grad_map[server_for_param]["grads"].append(grad)

            pserver_idx += 1
            if pserver_idx >= len(pserver_endpoints):
                pserver_idx = 0
    return param_grad_map


class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.

            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            Example to run:

            exe = fluid.Executor(place)
            t = fluid.DistributeTranspiler()
            t.transpile(optimize_ops, params_grads, pservers="127.0.0.1:6174", trainers=1)

            pserver_endpoint = os.getenv("PSERVER")
            if pserver_endpoint:
                pserver_prog = t.get_pserver_program(pserver_endpoint, optimize_ops)
                exe.run(fluid.default_startup_program())
                exe.run(pserver_prog)
            else:
                feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
                exe.run(fluid.default_startup_program())

                for pass_id in range(PASS_NUM):
                    ...

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string

            :return: return a list of programs
        """
        if program is None:
            program = default_main_program()
        self.program = program
        self.trainers = trainers
        self.optimize_ops = optimize_ops
        self._optimize_distributed(
            optimize_ops,
            program,
            params_grads,
            pservers=pservers,
            trainers=trainers,
            split_method=split_method)

    def _clone_param(self, block, v):
        assert isinstance(v, Parameter)
        new_p = Parameter(
            block=block,
            shape=v.shape,
            dtype=v.dtype,
            type=v.type,
            lod_level=v.lod_level,
            stop_gradient=v.stop_gradient,
            trainable=v.trainable,
            optimize_attr=v.optimize_attr,
            regularizer=v.regularizer,
            name=v.name)
        block.vars[new_p.name] = new_p

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=var.persistable)

    def _optimize_distributed(self, optimize_ops, program, params_and_grads,
                              **kwargs):
        if kwargs.has_key("split_method"):
            split_method = kwargs["split_method"]
        else:
            split_method = round_robin

        assert (callable(split_method))
        pserver_endpoints = kwargs["pservers"].split(",")
        self.param_grad_map = split_method(params_and_grads, pserver_endpoints)

        send_op_ordered_inputs = []
        send_op_ordered_outputs = []
        epmap = []
        for ep, v in self.param_grad_map.iteritems():
            send_op_ordered_inputs.extend(v["grads"])
            send_op_ordered_outputs.extend(v["params"])
            for i in v["grads"]:
                epmap.append(ep)
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_op_ordered_inputs
                    },  # inputs is a list of tensors to be send
            outputs={"Out": send_op_ordered_outputs},
            attrs={"endpoints": pserver_endpoints,
                   "epmap": epmap})

    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program

    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

    def get_pserver_program(self, endpoint, optimize_ops):
        pserver_program = Program()
        for v in self.param_grad_map[endpoint]["params"]:
            self._clone_param(pserver_program.global_block(), v)

        optimize_sub_program = Program()
        grad_var_names = [
            var.name for var in self.param_grad_map[endpoint]["grads"]
        ]
        for opt_op in optimize_ops:
            for _, var in opt_op.inputs.iteritems():
                # NOTE: append operators to merge gradients from multiple
                # trainers. If trainers == 1, this is not needed.
                if self.trainers > 1 and var.name in grad_var_names:
                    vars2merge = self._create_var_for_trainers(
                        optimize_sub_program.global_block(), var, self.trainers)
                    merged_var = optimize_sub_program.global_block().create_var(
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)
                    optimize_sub_program.global_block().append_op(
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
                    optimize_sub_program.global_block().append_op(
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
                else:
                    optimize_sub_program.global_block().create_var(
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

            if opt_op.inputs.has_key("Grad"):
                if opt_op.inputs["Grad"].name in grad_var_names:
                    optimize_sub_program.global_block().append_op(
                        type=opt_op.type,
                        inputs=opt_op.inputs,
                        outputs=opt_op.outputs,
                        attrs=opt_op.attrs)
            else:
                optimize_sub_program.global_block().append_op(
                    type=opt_op.type,
                    inputs=opt_op.inputs,
                    outputs=opt_op.outputs,
                    attrs=opt_op.attrs)
        pserver_program.global_block().append_op(
            type="recv",
            inputs={"RX":
                    self.param_grad_map[endpoint]["grads"]},  # grads to recv
            outputs={},
            attrs={
                "OptimizeProgram": optimize_sub_program.desc,
                "endpoint": endpoint,
                "ParamList":
                [p.name for p in self.param_grad_map[endpoint]["params"]],
                "GradList":
                [p.name for p in self.param_grad_map[endpoint]["grads"]],
                "Trainers": self.trainers
            })
        pserver_program.sync_with_cpp()
        return pserver_program