README.md 4.2 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8
English | [简体中文](README_cn.md)

# DeepSORT (Simple Online and Realtime Tracking with a Deep Association Metric)

## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model_Zoo)
- [Getting Start](#Getting_Start)
G
George Ni 已提交
9
- [Citations](#Citations)
G
George Ni 已提交
10 11

## Introduction
G
George Ni 已提交
12
[DeepSORT](https://arxiv.org/abs/1812.00442) (Deep Cosine Metric Learning SORT) extends the original [SORT](https://arxiv.org/abs/1703.07402) (Simple Online and Realtime Tracking) algorithm, it adds a CNN model to extract features in image of human part bounded by a detector. It integrates appearance information based on a deep appearance descriptor, and assigns and updates the detected targets to the existing corresponding trajectories like ReID task. The detection bboxes result required by DeepSORT can be generated by any detection model, and then the saved detection result file can be loaded for tracking. Here we select the `PCB + Pyramid ResNet101` model provided by [PaddleClas](https://github.com/PaddlePaddle/PaddleClas) as the ReID model.
G
George Ni 已提交
13 14 15

## Model Zoo

G
George 已提交
16
### DeepSORT on MOT-16 Training Set
G
George Ni 已提交
17

G
George Ni 已提交
18 19 20 21 22 23 24 25 26
| backbone  | input shape | MOTA | IDF1 |  IDS  |   FP  |   FN  |   FPS  | download| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: |
| ResNet101 | 1088x608 |  72.2  |  60.5  | 998  |  8054  | 21644 |  - | [download](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |

### DeepSORT on MOT-16 Test Set

| backbone  | input shape | MOTA | IDF1 |  IDS  |   FP  |   FN  |   FPS  | download| config |
| :---------| :------- | :----: | :----: | :--: | :----: | :---: | :---: | :---: | :---: |
| ResNet101 | 1088x608 |  64.1  |  53.0  | 1024  |  12457  | 51919 |  - | [download](https://paddledet.bj.bcebos.com/models/mot/deepsort_pcb_pyramid_r101.pdparams)|[config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml) |
G
George Ni 已提交
27 28

**Notes:**
G
George Ni 已提交
29
 DeepSORT does not need to train on MOT dataset, only used for evaluation. Before DeepSORT evaluation, you should get detection results by a detection model first, and then prepare them like this:
G
George Ni 已提交
30 31 32 33 34 35 36 37 38 39
```
det_results_dir
   |——————MOT16-02.txt
   |——————MOT16-04.txt
   |——————MOT16-05.txt
   |——————MOT16-09.txt
   |——————MOT16-10.txt
   |——————MOT16-11.txt
   |——————MOT16-13.txt
```
G
George Ni 已提交
40 41 42 43
For MOT16 dataset, you can download the det_results_dir.zip provided by PaddleDetection:
```
wget https://dataset.bj.bcebos.com/mot/det_results_dir.zip
```
G
George Ni 已提交
44 45
Each txt is the detection result of all the pictures extracted from each video, and each line describes a bounding box with the following format:
```
G
George Ni 已提交
46
[frame_id],[identity],[bb_left],[bb_top],[width],[height],[conf]
G
George Ni 已提交
47 48
```
**Notes:**
49 50 51 52 53 54
- `frame_id` is the frame number of the image
- `identity` is the object id using default value `-1`
- `bb_left` is the X coordinate of the left bound of the object box
- `bb_top` is the Y coordinate of the upper bound of the object box
- `width,height` is the pixel width and height
- `conf` is the object score with default value `1` (the results had been filtered out according to the detection score threshold)
G
George Ni 已提交
55 56 57

## Getting Start

G
George Ni 已提交
58
### 1. Evaluation
G
George Ni 已提交
59 60 61

```bash
# track the objects by loading detected result files
62
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/deepsort/deepsort_pcb_pyramid_r101.yml --det_results_dir {your detection results}
G
George Ni 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
```

## Citations
```
@inproceedings{Wojke2017simple,
  title={Simple Online and Realtime Tracking with a Deep Association Metric},
  author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich},
  booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
  year={2017},
  pages={3645--3649},
  organization={IEEE},
  doi={10.1109/ICIP.2017.8296962}
}

@inproceedings{Wojke2018deep,
  title={Deep Cosine Metric Learning for Person Re-identification},
  author={Wojke, Nicolai and Bewley, Alex},
  booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
  year={2018},
  pages={748--756},
  organization={IEEE},
  doi={10.1109/WACV.2018.00087}
}
```