export_model.py 7.3 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser
import ppdet.utils.checkpoint as checkpoint
26
import yaml
W
wangguanzhong 已提交
27
import logging
28
from collections import OrderedDict
W
wangguanzhong 已提交
29 30 31 32 33
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


34 35 36
def parse_reader(reader_cfg, metric, arch):
    preprocess_list = []

37
    image_shape = reader_cfg['inputs_def'].get('image_shape', [3, None, None])
38 39 40 41 42 43 44 45 46 47
    has_shape_def = not None in image_shape
    scale_set = {'RCNN', 'RetinaNet'}

    dataset = reader_cfg['dataset']
    anno_file = dataset.get_anno()
    with_background = dataset.with_background
    use_default_label = dataset.use_default_label

    if metric == 'COCO':
        from ppdet.utils.coco_eval import get_category_info
W
wangguanzhong 已提交
48
    elif metric == "VOC":
49
        from ppdet.utils.voc_eval import get_category_info
W
wangguanzhong 已提交
50
    elif metric == "WIDERFACE":
51 52 53 54 55
        from ppdet.utils.widerface_eval_utils import get_category_info
    else:
        raise ValueError(
            "metric only supports COCO, VOC, WIDERFACE, but received {}".format(
                metric))
56 57 58 59 60 61 62 63 64 65 66
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)
    label_list = [str(cat) for cat in catid2name.values()]

    sample_transforms = reader_cfg['sample_transforms']
    for st in sample_transforms[1:]:
        method = st.__class__.__name__
        p = {'type': method.replace('Image', '')}
        params = st.__dict__
        params.pop('_id')
        if p['type'] == 'Resize' and has_shape_def:
67 68 69 70 71
            params['target_size'] = min(image_shape[
                1:]) if arch in scale_set else image_shape[1]
            params['max_size'] = max(image_shape[
                1:]) if arch in scale_set else 0
            params['image_shape'] = image_shape[1:]
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        p.update(params)
        preprocess_list.append(p)
    batch_transforms = reader_cfg.get('batch_transforms', None)
    if batch_transforms:
        methods = [bt.__class__.__name__ for bt in batch_transforms]
        for bt in batch_transforms:
            method = bt.__class__.__name__
            if method == 'PadBatch':
                preprocess_list.append({'type': 'PadStride'})
                params = bt.__dict__
                preprocess_list[-1].update({'stride': params['pad_to_stride']})
                break

    return with_background, preprocess_list, label_list


def dump_infer_config(config):
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(FLAGS.output_dir, cfg_name)
    from ppdet.core.config.yaml_helpers import setup_orderdict
    setup_orderdict()
    infer_cfg = OrderedDict({
        'use_python_inference': False,
        'mode': 'fluid',
        'draw_threshold': 0.5,
        'metric': config['metric']
    })
99 100 101 102 103 104 105
    trt_min_subgraph = {
        'YOLO': 3,
        'SSD': 3,
        'RCNN': 40,
        'RetinaNet': 40,
        'Face': 3,
    }
106 107 108 109 110 111 112 113 114 115 116 117 118
    infer_arch = config['architecture']

    for arch, min_subgraph_size in trt_min_subgraph.items():
        if arch in infer_arch:
            infer_cfg['arch'] = arch
            infer_cfg['min_subgraph_size'] = min_subgraph_size
            break

    if 'Mask' in config['architecture']:
        infer_cfg['mask_resolution'] = config['MaskHead']['resolution']
    infer_cfg['with_background'], infer_cfg['Preprocess'], infer_cfg[
        'label_list'] = parse_reader(config['TestReader'], config['metric'],
                                     infer_cfg['arch'])
119

120 121 122 123 124
    yaml.dump(infer_cfg, open(os.path.join(save_dir, 'infer_cfg.yml'), 'w'))
    logger.info("Export inference config file to {}".format(
        os.path.join(save_dir, 'infer_cfg.yml')))


W
wangguanzhong 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
def prune_feed_vars(feeded_var_names, target_vars, prog):
    """
    Filter out feed variables which are not in program,
    pruned feed variables are only used in post processing
    on model output, which are not used in program, such
    as im_id to identify image order, im_shape to clip bbox
    in image.
    """
    exist_var_names = []
    prog = prog.clone()
    prog = prog._prune(targets=target_vars)
    global_block = prog.global_block()
    for name in feeded_var_names:
        try:
            v = global_block.var(name)
            exist_var_names.append(str(v.name))
        except Exception:
            logger.info('save_inference_model pruned unused feed '
                        'variables {}'.format(name))
            pass
    return exist_var_names


def save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(FLAGS.output_dir, cfg_name)
    feed_var_names = [var.name for var in feed_vars.values()]
152 153
    fetch_list = sorted(test_fetches.items(), key=lambda i: i[0])
    target_vars = [var[1] for var in fetch_list]
W
wangguanzhong 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog)
    logger.info("Export inference model to {}, input: {}, output: "
                "{}...".format(save_dir, feed_var_names,
                               [str(var.name) for var in target_vars]))
    fluid.io.save_inference_model(
        save_dir,
        feeded_var_names=feed_var_names,
        target_vars=target_vars,
        executor=exe,
        main_program=infer_prog,
        params_filename="__params__")


def main():
    cfg = load_config(FLAGS.config)

    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

    # Use CPU for exporting inference model instead of GPU
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
187 188 189
            inputs_def = cfg['TestReader']['inputs_def']
            inputs_def['use_dataloader'] = False
            feed_vars, _ = model.build_inputs(**inputs_def)
W
wangguanzhong 已提交
190 191 192 193 194 195 196
            test_fetches = model.test(feed_vars)
    infer_prog = infer_prog.clone(True)

    exe.run(startup_prog)
    checkpoint.load_params(exe, infer_prog, cfg.weights)

    save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
197
    dump_infer_config(cfg)
W
wangguanzhong 已提交
198 199 200 201 202 203 204 205 206


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output model files.")
207

W
wangguanzhong 已提交
208 209
    FLAGS = parser.parse_args()
    main()