activation_op.h 6.0 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
Q
qijun 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
// #include "paddle/operators/math/activation_functor.h"

// #define ACTIVATION_KERNEL_NAME(ACTIVATION_NAME) ACTIVATION_NAME##Kernel

// #define DEFINE_ACTIVATION_KERNEL(ACTIVATION_NAME)                              \
//   template <typename Place, typename T>                                        \
//   class ACTIVATION_KERNEL_NAME(ACTIVATION_NAME) : public framework::OpKernel { \
//    public:                                                                     \
//     void Compute(const framework::ExecutionContext& context) const override {  \
//       auto* X = context.Input<framework::Tensor>("X");                         \
//       auto* Y = context.Output<framework::Tensor>("Y");                        \
//       Y->mutable_data<T>(context.GetPlace());                                  \
//       math::ACTIVATION_NAME<Place, T> functor;                                 \
//       auto* device_context = context.device_context();                         \
//       functor(*device_context, *X, Y);                                         \
//     }                                                                          \
//   };

// #define DEFINE_ACTIVATION_GRAD_KERNEL(ACTIVATION_GRAD_NAME)                   \
//   template <typename Place, typename T>                                       \
//   class ACTIVATION_KERNEL_NAME(ACTIVATION_GRAD_NAME)                          \
//       : public framework::OpKernel {                                          \
//    public:                                                                    \
//     void Compute(const framework::ExecutionContext& context) const override { \
//       auto* X = context.Input<framework::Tensor>("X");                        \
//       auto* Y = context.Input<framework::Tensor>("Y");                        \
//       auto* dY =                                                              \
//           context.Input<framework::Tensor>(framework::GradVarName("Y"));      \
//       auto* dX =                                                              \
//           context.Output<framework::Tensor>(framework::GradVarName("X"));     \
//       dX->mutable_data<T>(context.GetPlace());                                \
//       math::ACTIVATION_GRAD_NAME<Place, T> functor;                           \
//       auto* device_context = context.device_context();                        \
//       functor(*device_context, *X, *Y, *dY, dX);                              \
//     }                                                                         \
//   };
Q
qijun 已提交
54 55 56 57

namespace paddle {
namespace operators {

Q
qijun 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
template <typename Place, typename T, typename Functor>
class ActivationKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Output<framework::Tensor>("Y");
    Y->mutable_data<T>(context.GetPlace());

    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, y);
  }
};

template <typename Place, typename T, typename Functor>
class ActivationGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
    auto* Y = context.Input<framework::Tensor>("Y");
    auto* dY = context.Input<framework::Tensor>(framework::GradVarName("Y"));
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

    auto dy = framework::EigenVector<T>::Flatten(*dY);
    auto x = framework::EigenVector<T>::Flatten(*X);
    auto y = framework::EigenVector<T>::Flatten(*Y);
    auto dx = framework::EigenVector<T>::Flatten(*dX);
    auto place = context.GetEigenDevice<Place>();
    Functor functor;
    functor(place, x, y, dy, dx);
  }
};

struct Sigmoid {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = 1. / (1. + (-x).exp());
  }
};

struct SigmoidGrad {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = dy * y * (1. - y);
  }
};

struct Exp {
  template <typename Device, typename X, typename Y>
  void operator()(Device d, X x, Y y) {
    y.device(d) = x.exp();
  }
};

struct ExpGrad {
  template <typename Device, typename X, typename Y, typename dY, typename dX>
  void operator()(Device d, X x, Y y, dY dy, dX dx) {
    dx.device(d) = y;
  }
};

// template <typename Device, typename X, typename Y>
// struct Relu {
//   void operator()(Device d, X x, Y y) {
//     y.device(d) = x.cwiseMax(static_cast<T>(0));
//   }
// };

// template <typename Device, typename X, typename Y, typename dY, typename dX>
// struct ReluGrad {
//   void operator()(Device d, X x, Y y, dY dy, dX dx) {
//     dx.device(d) = dy * (x > static_cast<T>(0)).template cast<T>();
//   }
// };

// DEFINE_ACTIVATION_KERNEL(Sigmoid);
Q
qijun 已提交
137

Q
qijun 已提交
138
// DEFINE_ACTIVATION_GRAD_KERNEL(SigmoidGrad);
Q
qijun 已提交
139

Q
qijun 已提交
140
// DEFINE_ACTIVATION_KERNEL(Exp);
Q
qijun 已提交
141

Q
qijun 已提交
142
// DEFINE_ACTIVATION_GRAD_KERNEL(ExpGrad);
Q
qijun 已提交
143

Q
qijun 已提交
144
// DEFINE_ACTIVATION_KERNEL(Relu);
Q
qijun 已提交
145

Q
qijun 已提交
146
// DEFINE_ACTIVATION_GRAD_KERNEL(ReluGrad);
Q
qijun 已提交
147 148 149

}  // namespace operators
}  // namespace paddle