mot_jde_infer.py 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
20 21 22 23
from collections import defaultdict
import paddle

from benchmark_utils import PaddleInferBenchmark
W
wangguanzhong 已提交
24 25 26 27 28 29 30 31
from preprocess import decode_image
from utils import argsparser, Timer, get_current_memory_mb
from infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig

# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
32

W
wangguanzhong 已提交
33 34
from pptracking.python.mot import JDETracker
from pptracking.python.mot.utils import MOTTimer, write_mot_results
35
from pptracking.python.mot.visualize import plot_tracking_dict
36 37

# Global dictionary
W
wangguanzhong 已提交
38
MOT_JDE_SUPPORT_MODELS = {
39 40 41 42 43
    'JDE',
    'FairMOT',
}


44
class JDE_Detector(Detector):
45 46 47
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
48
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
49
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
50
        batch_size (int): size of pre batch in inference
51 52 53 54 55 56
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
57 58 59 60 61
        enable_mkldnn (bool): whether to open MKLDNN
        output_dir (string): The path of output, default as 'output'
        threshold (float): Score threshold of the detected bbox, default as 0.5
        save_images (bool): Whether to save visualization image results, default as False
        save_mot_txts (bool): Whether to save tracking results (txt), default as False
62 63
    """

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    def __init__(
            self,
            model_dir,
            tracker_config=None,
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1088,
            trt_opt_shape=608,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
            output_dir='output',
            threshold=0.5,
            save_images=False,
            save_mot_txts=False, ):
81 82
        super(JDE_Detector, self).__init__(
            model_dir=model_dir,
83
            device=device,
84 85
            run_mode=run_mode,
            batch_size=batch_size,
86 87 88 89 90
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
91 92 93
            enable_mkldnn=enable_mkldnn,
            output_dir=output_dir,
            threshold=threshold, )
94 95
        self.save_images = save_images
        self.save_mot_txts = save_mot_txts
W
wangguanzhong 已提交
96 97 98 99 100 101 102
        assert batch_size == 1, "MOT model only supports batch_size=1."
        self.det_times = Timer(with_tracker=True)
        self.num_classes = len(self.pred_config.labels)

        # tracker config
        assert self.pred_config.tracker, "The exported JDE Detector model should have tracker."
        cfg = self.pred_config.tracker
103 104
        min_box_area = cfg.get('min_box_area', 0.0)
        vertical_ratio = cfg.get('vertical_ratio', 0.0)
W
wangguanzhong 已提交
105 106 107
        conf_thres = cfg.get('conf_thres', 0.0)
        tracked_thresh = cfg.get('tracked_thresh', 0.7)
        metric_type = cfg.get('metric_type', 'euclidean')
108

G
George Ni 已提交
109
        self.tracker = JDETracker(
110
            num_classes=self.num_classes,
F
Feng Ni 已提交
111 112
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
G
George Ni 已提交
113 114 115
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)
116

W
wangguanzhong 已提交
117 118 119 120 121 122 123 124 125 126
    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_boxes = result['pred_dets']
        if np_boxes.shape[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'pred_dets': np.zeros([0, 6]), 'pred_embs': None}
        result = {k: v for k, v in result.items() if v is not None}
        return result

    def tracking(self, det_results):
127
        pred_dets = det_results['pred_dets']  # cls_id, score, x0, y0, x1, y1
W
wangguanzhong 已提交
128
        pred_embs = det_results['pred_embs']
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        online_targets_dict = self.tracker.update(pred_dets, pred_embs)

        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        for cls_id in range(self.num_classes):
            online_targets = online_targets_dict[cls_id]
            for t in online_targets:
                tlwh = t.tlwh
                tid = t.track_id
                tscore = t.score
                if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
                if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                        3] > self.tracker.vertical_ratio:
                    continue
                online_tlwhs[cls_id].append(tlwh)
                online_ids[cls_id].append(tid)
                online_scores[cls_id].append(tscore)
G
George Ni 已提交
147
        return online_tlwhs, online_scores, online_ids
148

W
wangguanzhong 已提交
149
    def predict(self, repeats=1):
150 151
        '''
        Args:
W
wangguanzhong 已提交
152
            repeats (int): repeats number for prediction
153
        Returns:
W
wangguanzhong 已提交
154
            result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box,
155
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
156 157
                            FairMOT(JDE)'s result include 'pred_embs': np.ndarray:
                            shape: [N, 128]
158
        '''
W
wangguanzhong 已提交
159
        # model prediction
W
wangguanzhong 已提交
160
        np_pred_dets, np_pred_embs = None, None
161 162 163 164
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
W
wangguanzhong 已提交
165
            np_pred_dets = boxes_tensor.copy_to_cpu()
166
            embs_tensor = self.predictor.get_output_handle(output_names[1])
W
wangguanzhong 已提交
167 168 169 170 171 172 173 174 175
            np_pred_embs = embs_tensor.copy_to_cpu()

        result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs)
        return result

    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
176 177
                      visual=True,
                      seq_name=None):
W
wangguanzhong 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        mot_results = []
        num_classes = self.num_classes
        image_list.sort()
        ids2names = self.pred_config.labels
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        for frame_id, img_file in enumerate(image_list):
            batch_image_list = [img_file]  # bs=1 in MOT model
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                result_warmup = self.predict(repeats=repeats)  # warmup
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking
                result_warmup = self.tracking(det_result)
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu

            else:
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                self.det_times.postprocess_time_s.start()
                det_result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()

                # tracking process
                self.det_times.tracking_time_s.start()
                online_tlwhs, online_scores, online_ids = self.tracking(
                    det_result)
                self.det_times.tracking_time_s.end()
                self.det_times.img_num += 1

            if visual:
238
                if len(image_list) > 1 and frame_id % 10 == 0:
W
wangguanzhong 已提交
239 240 241 242 243 244 245 246 247 248 249
                    print('Tracking frame {}'.format(frame_id))
                frame, _ = decode_image(img_file, {})

                im = plot_tracking_dict(
                    frame,
                    num_classes,
                    online_tlwhs,
                    online_ids,
                    online_scores,
                    frame_id=frame_id,
                    ids2names=ids2names)
250 251
                if seq_name is None:
                    seq_name = image_list[0].split('/')[-2]
W
wangguanzhong 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264
                save_dir = os.path.join(self.output_dir, seq_name)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                cv2.imwrite(
                    os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)

            mot_results.append([online_tlwhs, online_scores, online_ids])
        return mot_results

    def predict_video(self, video_file, camera_id):
        video_out_name = 'mot_output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
G
George Ni 已提交
265
        else:
W
wangguanzhong 已提交
266 267 268 269 270 271 272 273 274 275 276 277
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
278 279
        video_format = 'mp4v'
        fourcc = cv2.VideoWriter_fourcc(*video_format)
W
wangguanzhong 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

        frame_id = 1
        timer = MOTTimer()
        results = defaultdict(list)  # support single class and multi classes
        num_classes = self.num_classes
        data_type = 'mcmot' if num_classes > 1 else 'mot'
        ids2names = self.pred_config.labels
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            if frame_id % 10 == 0:
                print('Tracking frame: %d' % (frame_id))
            frame_id += 1

            timer.tic()
297 298
            seq_name = video_out_name.split('.')[0]
            mot_results = self.predict_image(
lazyn's avatar
lazyn 已提交
299
                [frame[:, :, ::-1]], visual=False, seq_name=seq_name)
W
wangguanzhong 已提交
300 301 302 303 304 305 306 307 308 309
            timer.toc()

            online_tlwhs, online_scores, online_ids = mot_results[0]
            for cls_id in range(num_classes):
                results[cls_id].append(
                    (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
                     online_ids[cls_id]))

            fps = 1. / timer.duration
            im = plot_tracking_dict(
W
wangguanzhong 已提交
310 311 312 313 314
                frame,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
W
wangguanzhong 已提交
315 316
                frame_id=frame_id,
                fps=fps,
W
wangguanzhong 已提交
317
                ids2names=ids2names)
318

W
wangguanzhong 已提交
319 320 321 322 323
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
324 325 326 327 328 329 330

        if self.save_mot_txts:
            result_filename = os.path.join(
                self.output_dir, video_out_name.split('.')[-2] + '.txt')

            write_mot_results(result_filename, results, data_type, num_classes)

G
George Ni 已提交
331
        writer.release()
332 333 334


def main():
335
    detector = JDE_Detector(
336
        FLAGS.model_dir,
337
        tracker_config=None,
338
        device=FLAGS.device,
339
        run_mode=FLAGS.run_mode,
340
        batch_size=1,
341 342 343 344 345
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
346 347 348 349 350
        enable_mkldnn=FLAGS.enable_mkldnn,
        output_dir=FLAGS.output_dir,
        threshold=FLAGS.threshold,
        save_images=FLAGS.save_images,
        save_mot_txts=FLAGS.save_mot_txts)
351 352 353

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
354
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
355
    else:
G
George Ni 已提交
356 357
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
W
wangguanzhong 已提交
358 359
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)

G
George Ni 已提交
360 361 362 363
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
364
            model_dir = FLAGS.model_dir
G
George Ni 已提交
365 366 367 368
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
W
wangguanzhong 已提交
369
            bench_log(detector, img_list, model_info, name='MOT')
370 371 372 373 374 375 376


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
377 378 379
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
380 381

    main()