CONTRIB.md 4.4 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5
English | [简体中文](CONTRIB_cn.md)
# PaddleDetection applied for specific scenarios

We provide some models implemented by PaddlePaddle to detect objects in specific scenarios, users can download the models and use them in these scenarios.

6 7
| Task                 | Algorithm | Box AP | Download                                                                                | Configs |
|:---------------------|:---------:|:------:| :-------------------------------------------------------------------------------------: |:------:|
8 9
| Vehicle Detection    |  YOLOv3  |  54.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/vehicle_yolov3_darknet.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/contrib/VehicleDetection/vehicle_yolov3_darknet.yml) |
| Pedestrian Detection |  YOLOv3  |  51.8  | [model](https://paddlemodels.bj.bcebos.com/object_detection/pedestrian_yolov3_darknet.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/static/contrib/PedestrianDetection/pedestrian_yolov3_darknet.yml) |
G
Guanghua Yu 已提交
10 11 12 13 14 15 16 17 18 19 20

## Vehicle Detection

One of major applications of vehichle detection is traffic monitoring. In this scenary, vehicles to be detected are mostly captured by the cameras mounted on top of traffic light columns.

### 1. Network

The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53.

### 2. Configuration for training

21
PaddleDetection provides users with a configuration file [yolov3_darknet.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/static/configs/yolov3_darknet.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for vehicle detection:
G
Guanghua Yu 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

* max_iters: 120000
* num_classes: 6
* anchors: [[8, 9], [10, 23], [19, 15], [23, 33], [40, 25], [54, 50], [101, 80], [139, 145], [253, 224]]
* label_smooth: false
* nms/nms_top_k: 400
* nms/score_threshold: 0.005
* milestones: [60000, 80000]
* dataset_dir: dataset/vehicle

### 3. Accuracy

The accuracy of the model trained and evaluated on our private data is shown as followed:

AP at IoU=.50:.05:.95 is 0.545.

AP at IoU=.50 is 0.764.

### 4. Inference

Users can employ the model to conduct the inference:

```
export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c contrib/VehicleDetection/vehicle_yolov3_darknet.yml \
                         -o weights=https://paddlemodels.bj.bcebos.com/object_detection/vehicle_yolov3_darknet.tar \
                         --infer_dir contrib/VehicleDetection/demo \
                         --draw_threshold 0.2 \
                         --output_dir contrib/VehicleDetection/demo/output

```

Some inference results are visualized below:

![](../images/VehicleDetection_001.jpeg)

![](../images/VehicleDetection_005.png)

## Pedestrian Detection

The main applications of pedetestrian detection include intelligent monitoring. In this scenary, photos of pedetestrians are taken by surveillance cameras in public areas, then pedestrian detection are conducted on these photos.

### 1. Network

The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53.

### 2. Configuration for training

70
PaddleDetection provides users with a configuration file [yolov3_darknet.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/static/configs/yolov3_darknet.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for pedestrian detection:
G
Guanghua Yu 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

* max_iters: 200000
* num_classes: 1
* snapshot_iter: 5000
* milestones: [150000, 180000]
* dataset_dir: dataset/pedestrian

### 3. Accuracy

The accuracy of the model trained and evaluted on our private data is shown as followed:

AP at IoU=.50:.05:.95 is 0.518.

AP at IoU=.50 is 0.792.

### 4. Inference

Users can employ the model to conduct the inference:

```
export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c contrib/PedestrianDetection/pedestrian_yolov3_darknet.yml \
                         -o weights=https://paddlemodels.bj.bcebos.com/object_detection/pedestrian_yolov3_darknet.tar \
                         --infer_dir contrib/PedestrianDetection/demo \
                         --draw_threshold 0.3 \
                         --output_dir contrib/PedestrianDetection/demo/output
```

Some inference results are visualized below:

![](../images/PedestrianDetection_001.png)

![](../images/PedestrianDetection_004.png)