uniform_random_op.cu 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include <glog/logging.h>
Q
qijun 已提交
15 16
#include <thrust/random.h>
#include <thrust/transform.h>
17
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
20 21
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/transform.h"
Q
qijun 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;

  __host__ __device__ UniformGenerator(T min, T max, int seed)
      : min_(min), max_(max), seed_(seed) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
    return dist(rng);
  }
};

43 44 45 46 47
template <typename T, typename V>
struct CastFunctor {
  HOSTDEVICE V operator()(const T& a) { return static_cast<V>(a); }
};

Q
qijun 已提交
48 49 50 51
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
Y
Yu Yang 已提交
52
class GPUUniformRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
53 54
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yancey1989 已提交
55
    framework::Tensor* tensor = nullptr;
Y
fix ci  
Yancey1989 已提交
56
    auto out_var = context.OutputVar("Out");
Y
Yancey1989 已提交
57 58 59
    if (out_var->IsType<framework::LoDTensor>()) {
      tensor = out_var->GetMutable<framework::LoDTensor>();
    } else if (out_var->IsType<framework::SelectedRows>()) {
Y
fix ci  
Yancey1989 已提交
60
      auto shape = context.Attr<std::vector<int>>("shape");
Y
Yancey1989 已提交
61 62 63
      tensor = out_var->GetMutable<framework::SelectedRows>()->mutable_value();
      tensor->Resize(framework::make_ddim(shape));
    } else {
Y
Yancey1989 已提交
64 65 66
      PADDLE_THROW(
          "uniform_random_op's output only"
          "supports SelectedRows and Tensor");
Y
Yancey1989 已提交
67
    }
Q
qijun 已提交
68
    T* data = tensor->mutable_data<T>(context.GetPlace());
Y
Pass CI  
Yu Yang 已提交
69
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
70 71 72 73
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
    }
Y
Yu Yang 已提交
74 75
    T min = static_cast<T>(context.Attr<float>("min"));
    T max = static_cast<T>(context.Attr<float>("max"));
Q
qijun 已提交
76
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
77
    int64_t size = tensor->numel();
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    if (out_var->IsType<framework::LoDTensor>() &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      framework::Tensor master_copy_tensor;
      master_copy_tensor.Resize(tensor->dims());
      float* master_copy_tensor_data =
          master_copy_tensor.mutable_data<float>(context.GetPlace());
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<float>(master_copy_tensor_data),
                        UniformGenerator<float>(static_cast<float>(min),
                                                static_cast<float>(max), seed));
      platform::Transform<platform::CUDADeviceContext> trans;
      auto* in_begin = master_copy_tensor.data<float>();
      auto* in_end = in_begin + master_copy_tensor.numel();
      auto* out_begin = tensor->mutable_data<T>(context.GetPlace());
      trans(context.template device_context<platform::CUDADeviceContext>(),
            in_begin, in_end, out_begin, CastFunctor<float, T>());
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        UniformGenerator<T>(min, max, seed));
    }
    if (VLOG_IS_ON(5)) {
      framework::Tensor cpu_tensor;
      framework::TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
      auto& dev_ctx =
          *platform::DeviceContextPool::Instance().Get(context.GetPlace());
      dev_ctx.Wait();
      auto x = framework::EigenVector<T>::Flatten(cpu_tensor);
      VLOG(5) << "The Uniform output " << x;
    }
Q
qijun 已提交
109 110 111 112 113
  }
};

}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
114

115 116 117 118 119 120 121 122 123 124
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
    uniform_random, paddle::operators::GPUUniformRandomKernel<float>,
    paddle::operators::GPUUniformRandomKernel<double>,
    paddle::operators::GPUUniformRandomKernel<plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    uniform_random_batch_size_like,
    paddle::operators::GPUUniformRandomKernel<float>,
    paddle::operators::GPUUniformRandomKernel<double>,
    paddle::operators::GPUUniformRandomKernel<plat::float16>);