optimizer.py 21.2 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from collections import defaultdict
Q
Qiao Longfei 已提交
16

17
import framework
Q
Qiao Longfei 已提交
18
import layers
F
fengjiayi 已提交
19
from backward import append_backward
20
from framework import unique_name, program_guard
21 22 23
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
24
from clip import append_gradient_clip_ops, error_clip_callback
25

26
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
27 28 29 30 31 32


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
33 34
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
35 36
    """

Q
Qiao Longfei 已提交
37 38
    def __init__(self, learning_rate, global_step=None, regularization=None):
        assert learning_rate is not None
39
        self._global_step = global_step
D
dzhwinter 已提交
40
        self.regularization = regularization
Q
Qiao Longfei 已提交
41
        self._global_learning_rate = learning_rate
42 43 44 45 46
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
47
        self.helper = None
Q
Qiao Longfei 已提交
48

Q
Qiao Longfei 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    def _create_global_learning_rate(self):
        if isinstance(self._global_learning_rate, float):
            self._global_learning_rate = layers.create_global_var(
                name=unique_name("learning_rate"),
                shape=[1],
                value=float(self._global_learning_rate),
                dtype='float32',
                persistable=True)

        if not isinstance(self._global_learning_rate, framework.Variable):
            raise ValueError("learning rate should be a Variable, "
                             "actual type is %s",
                             type(self._global_learning_rate))

    @property
    def global_learning_rate(self):
        """
        get global decayed learning rate
        :return:
        """
        return self._global_learning_rate

Q
Qiao Longfei 已提交
71 72 73 74 75
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

76 77 78 79
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
Q
Qiao Longfei 已提交
80
        return self._global_learning_rate * param_lr
81 82 83 84 85 86 87

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
88
        """
89 90
        pass

91 92 93 94 95 96 97 98 99 100 101 102 103
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
104
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
105 106 107 108 109 110 111 112 113 114 115
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
116
            raise Exception("Accumulator {} already exists for parameter {}".
117
                            format(name, param.name))
Q
Qiao Longfei 已提交
118 119 120 121 122

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
            name=unique_name(name),
            persistable=True,
F
fengjiayi 已提交
123
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
124 125 126
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
127
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
128
        self._accumulators[name][param.name] = var
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
166 167 168
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
169
                                 startup_program=None):
Q
Qiao Longfei 已提交
170 171 172 173 174 175 176
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
177 178 179 180
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
181
          :param startup_program:
Q
Qiao Longfei 已提交
182
        """
183 184 185 186 187
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
188
        # for parameters and extend _finish_update method to add custom ops.
189 190

        # Create any accumulators
Q
Qiao Longfei 已提交
191
        program = loss.block.program
192 193 194 195
        with program_guard(program, startup_program):
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
196
            self._create_global_learning_rate()
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Returned list of ops can include more ops in addition
            # to optimization ops
            return_ops = optimize_ops

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
            finish_ops = self._finish_update(loss.block)
            if finish_ops is not None:
                return_ops += finish_ops

            if self._global_step is not None:
                return_ops.append(self._increment_global_step(loss.block))
            return return_ops
Q
Qiao Longfei 已提交
219

Q
Qiao Longfei 已提交
220 221
    def minimize(self,
                 loss,
222
                 startup_program=None,
Q
Qiao Longfei 已提交
223 224
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
225 226
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
227
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
228 229
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
230 231
        params_grads = append_backward(loss, parameter_list, no_grad_set,
                                       error_clip_callback)
Y
Yu Yang 已提交
232 233 234

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
235
        # Add regularization if any
D
dzhwinter 已提交
236 237
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
238

Q
Qiao Longfei 已提交
239
        optimize_ops = self.create_optimization_pass(params_grads, loss,
240
                                                     startup_program)
T
typhoonzero 已提交
241
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
242 243 244 245 246 247


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
248
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
249
        assert learning_rate is not None
Q
Qiao Longfei 已提交
250 251
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
Q
Qiao Longfei 已提交
252 253
        self.type = "sgd"

254 255
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
256

Q
Qiao Longfei 已提交
257 258 259 260 261 262
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
263
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
264
            },
265
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
266 267

        return sgd_op
268 269 270 271 272 273 274


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
275
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
276 277
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
278 279
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
280 281
        self.type = "momentum"
        self._momentum = momentum
282
        self._use_nesterov = bool(use_nesterov)
283 284 285 286 287

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
288
            self._add_accumulator(self._velocity_acc_str, p)
289 290 291 292 293 294 295 296 297 298 299 300 301

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
302
                "LearningRate": self._create_param_lr(param_and_grad)
303 304 305 306 307
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
308
            attrs={"mu": self._momentum,
309
                   "use_nesterov": self._use_nesterov})
310 311

        return momentum_op
312 313 314 315 316 317 318


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
319
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
320 321
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
322 323
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
324 325 326 327 328 329 330
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
331
            self._add_accumulator(self._moment_acc_str, p)
332 333 334 335 336 337 338

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

339
        # Create the adagrad optimizer op
340 341 342 343 344 345
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
346
                "LearningRate": self._create_param_lr(param_and_grad)
347 348 349 350 351 352
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
353 354 355 356 357 358 359 360 361 362 363 364


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
365
                 epsilon=1e-8,
D
dzhwinter 已提交
366
                 **kwargs):
367 368 369 370
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
371 372
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
373 374 375 376 377 378 379 380
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
381
        main_block = block.program.global_block()
382 383
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
384 385 386 387 388 389 390
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
391
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
392 393 394 395 396 397 398 399 400

        self._beta2_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta2_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
401
            self._beta2_pow_acc, initializer=Constant(self._beta2))
402 403 404

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
405 406
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
407 408 409 410 411 412 413 414

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
415
        # create the adam optimize op
416 417 418 419 420
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
421
                "LearningRate": self._create_param_lr(param_and_grad),
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
444 445
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
446 447 448 449 450
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
451
        scale_beta2 = main_block.append_op(
452 453 454 455 456 457
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
458 459 460 461 462 463 464 465 466 467 468 469


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
470
                 epsilon=1e-8,
D
dzhwinter 已提交
471
                 **kwargs):
472 473 474 475
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
476 477
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
478 479 480 481 482 483 484 485
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
486 487 488 489 490 491 492
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
493
            self._beta1_pow_acc, initializer=Constant(self._beta1))
494 495 496

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
497 498
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
499 500 501 502 503 504 505 506 507 508 509 510 511

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
512
                "LearningRate": self._create_param_lr(param_and_grad),
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
534 535
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
536 537 538 539 540 541
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
542 543 544 545 546 547 548


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
549
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
550 551 552 553
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
554 555
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate, **kwargs)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer