test_tensorrt.cc 5.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yan Chunwei 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
Y
Yan Chunwei 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yan Chunwei 已提交
14

15 16
#include <cuda.h>
#include <cuda_runtime_api.h>
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "NvInfer.h"
#include "paddle/fluid/platform/dynload/tensorrt.h"

namespace dy = paddle::platform::dynload;

class Logger : public nvinfer1::ILogger {
 public:
  void log(nvinfer1::ILogger::Severity severity, const char* msg) override {
    switch (severity) {
      case Severity::kINFO:
        LOG(INFO) << msg;
        break;
      case Severity::kWARNING:
        LOG(WARNING) << msg;
        break;
      case Severity::kINTERNAL_ERROR:
      case Severity::kERROR:
        LOG(ERROR) << msg;
        break;
      default:
        break;
    }
  }
};

class ScopedWeights {
 public:
46
  explicit ScopedWeights(float value) : value_(value) {
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60
    w.type = nvinfer1::DataType::kFLOAT;
    w.values = &value_;
    w.count = 1;
  }
  const nvinfer1::Weights& get() { return w; }

 private:
  float value_;
  nvinfer1::Weights w;
};

// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
61
nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
62
  return static_cast<nvinfer1::IBuilder*>(
63
      dy::createInferBuilder_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
64
}
65
nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger* logger) {
Y
Yan Chunwei 已提交
66
  return static_cast<nvinfer1::IRuntime*>(
67
      dy::createInferRuntime_INTERNAL(logger, NV_TENSORRT_VERSION));
Y
Yan Chunwei 已提交
68 69 70 71 72 73 74 75 76
}

const char* kInputTensor = "input";
const char* kOutputTensor = "output";

// Creates a network to compute y = 2x + 3
nvinfer1::IHostMemory* CreateNetwork() {
  Logger logger;
  // Create the engine.
77
  nvinfer1::IBuilder* builder = createInferBuilder(&logger);
Y
Yan Chunwei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
  ScopedWeights weights(2.);
  ScopedWeights bias(3.);

  nvinfer1::INetworkDefinition* network = builder->createNetwork();
  // Add the input
  auto input = network->addInput(kInputTensor, nvinfer1::DataType::kFLOAT,
                                 nvinfer1::DimsCHW{1, 1, 1});
  EXPECT_NE(input, nullptr);
  // Add the hidden layer.
  auto layer = network->addFullyConnected(*input, 1, weights.get(), bias.get());
  EXPECT_NE(layer, nullptr);
  // Mark the output.
  auto output = layer->getOutput(0);
  output->setName(kOutputTensor);
  network->markOutput(*output);
  // Build the engine.
  builder->setMaxBatchSize(1);
  builder->setMaxWorkspaceSize(1 << 10);
  auto engine = builder->buildCudaEngine(*network);
  EXPECT_NE(engine, nullptr);
  // Serialize the engine to create a model, then close.
  nvinfer1::IHostMemory* model = engine->serialize();
  network->destroy();
  engine->destroy();
  builder->destroy();
  return model;
}

106
void Execute(nvinfer1::IExecutionContext* context, const float* input,
Y
Yan Chunwei 已提交
107
             float* output) {
108
  const nvinfer1::ICudaEngine& engine = context->getEngine();
Y
Yan Chunwei 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121
  // Two binds, input and output
  ASSERT_EQ(engine.getNbBindings(), 2);
  const int input_index = engine.getBindingIndex(kInputTensor);
  const int output_index = engine.getBindingIndex(kOutputTensor);
  // Create GPU buffers and a stream
  void* buffers[2];
  ASSERT_EQ(0, cudaMalloc(&buffers[input_index], sizeof(float)));
  ASSERT_EQ(0, cudaMalloc(&buffers[output_index], sizeof(float)));
  cudaStream_t stream;
  ASSERT_EQ(0, cudaStreamCreate(&stream));
  // Copy the input to the GPU, execute the network, and copy the output back.
  ASSERT_EQ(0, cudaMemcpyAsync(buffers[input_index], input, sizeof(float),
                               cudaMemcpyHostToDevice, stream));
122
  context->enqueue(1, buffers, stream, nullptr);
Y
Yan Chunwei 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  ASSERT_EQ(0, cudaMemcpyAsync(output, buffers[output_index], sizeof(float),
                               cudaMemcpyDeviceToHost, stream));
  cudaStreamSynchronize(stream);

  // Release the stream and the buffers
  cudaStreamDestroy(stream);
  ASSERT_EQ(0, cudaFree(buffers[input_index]));
  ASSERT_EQ(0, cudaFree(buffers[output_index]));
}

TEST(TensorrtTest, BasicFunction) {
  // Create the network serialized model.
  nvinfer1::IHostMemory* model = CreateNetwork();

  // Use the model to create an engine and an execution context.
  Logger logger;
139
  nvinfer1::IRuntime* runtime = createInferRuntime(&logger);
Y
Yan Chunwei 已提交
140 141 142 143 144 145 146 147
  nvinfer1::ICudaEngine* engine =
      runtime->deserializeCudaEngine(model->data(), model->size(), nullptr);
  model->destroy();
  nvinfer1::IExecutionContext* context = engine->createExecutionContext();

  // Execute the network.
  float input = 1234;
  float output;
148
  Execute(context, &input, &output);
Y
Yan Chunwei 已提交
149 150 151 152 153 154 155
  EXPECT_EQ(output, input * 2 + 3);

  // Destroy the engine.
  context->destroy();
  engine->destroy();
  runtime->destroy();
}