yolov3_darknet_qat.yml 736 字节
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12
pretrain_weights: https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams
slim: QAT

QAT:
  quant_config: {
    'weight_quantize_type': 'channel_wise_abs_max', 'activation_quantize_type': 'moving_average_abs_max',
    'weight_bits': 8, 'activation_bits': 8, 'dtype': 'int8', 'window_size': 10000, 'moving_rate': 0.9,
    'quantizable_layer_type': ['Conv2D', 'Linear']}
  print_model: True

epoch: 50

L
Lin Manhui 已提交
13 14 15
TrainReader:
  batch_size: 8

G
Guanghua Yu 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
LearningRate:
  base_lr: 0.0001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 30
    - 45
  - !LinearWarmup
    start_factor: 0.
    steps: 1000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2