ssdlite_mobilenet_v3_small_fpn.yml 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar
save_dir: output
weights: output/ssdlite_mobilenet_v3_small_fpn/model_final
# 80(label_class) + 1(background)
num_classes: 81

SSD:
  backbone: MobileNetV3
  fpn: FPN
  multi_box_head: SSDLiteMultiBoxHead
  output_decoder:
    background_label: 0
    keep_top_k: 200
    nms_eta: 1.0
    nms_threshold: 0.45
    nms_top_k: 400
    score_threshold: 0.01

FPN:
  num_chan: 256
  max_level: 7
  norm_type: bn
  norm_decay: 0.00004
  reverse_out: true

MobileNetV3:
  scale: 1.0
  model_name: small
  extra_block_filters: [[256, 512], [128, 256], [128, 256], [64, 128]]
  feature_maps: [5, 7, 8, 9, 10, 11]
  lr_mult_list: [0.25, 0.25, 0.5, 0.5, 0.75]
  conv_decay: 0.00004

SSDLiteMultiBoxHead:
  aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]]
  base_size: 320
  steps: [16, 32, 64, 107, 160, 320]
  flip: true
  clip: true
  max_ratio: 95
  min_ratio: 20
  offset: 0.5
  conv_decay: 0.00004

LearningRate:
  base_lr: 0.4
  schedulers:
  - !CosineDecay
    max_iters: 400000
  - !LinearWarmup
    start_factor: 0.33333
    steps: 2000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

TrainReader:
  inputs_def:
    image_shape: [3, 320, 320]
    fields: ['image', 'gt_bbox', 'gt_class']
  dataset:
    !COCODataSet
    dataset_dir: dataset/coco
    anno_path: annotations/instances_train2017.json
    image_dir: train2017
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !RandomDistort
    brightness_lower: 0.875
    brightness_upper: 1.125
    is_order: true
  - !RandomExpand
    fill_value: [123.675, 116.28, 103.53]
  - !RandomCrop
    allow_no_crop: false
  - !NormalizeBox {}
  - !ResizeImage
    interp: 1
    target_size: 320
    use_cv2: false
  - !RandomFlipImage
    is_normalized: false
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: true
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: true
  batch_size: 64
  shuffle: true
  drop_last: true
  # Number of working threads/processes. To speed up, can be set to 16 or 32 etc.
  worker_num: 8
  # Size of shared memory used in result queue. After increasing `worker_num`, need expand `memsize`.
  memsize: 8G
  # Buffer size for multi threads/processes.one instance in buffer is one batch data.
  # To speed up, can be set to 64 or 128 etc.
  bufsize: 32
  use_process: true


EvalReader:
  inputs_def:
    image_shape: [3, 320, 320]
    fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id']
  dataset:
    !COCODataSet
    dataset_dir: dataset/coco
    anno_path: annotations/instances_val2017.json
    image_dir: val2017
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !NormalizeBox {}
  - !ResizeImage
    interp: 1
    target_size: 320
    use_cv2: false
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: true
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  batch_size: 8
  worker_num: 8
  bufsize: 32
  use_process: false

TestReader:
  inputs_def:
    image_shape: [3,320,320]
    fields: ['image', 'im_id', 'im_shape']
  dataset:
    !ImageFolder
    anno_path: annotations/instances_val2017.json
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !ResizeImage
    interp: 1
    max_size: 0
    target_size: 320
161
    use_cv2: true
162 163 164 165 166 167 168 169 170
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: true
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  batch_size: 1