mot_jde_infer.py 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import yaml
import cv2
import numpy as np
import paddle
from benchmark_utils import PaddleInferBenchmark
22
from preprocess import preprocess
23 24 25 26 27 28 29 30

from tracker import JDETracker
from ppdet.modeling.mot import visualization as mot_vis
from ppdet.modeling.mot.utils import Timer as MOTTimer

from paddle.inference import Config
from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb
31
from infer import Detector, get_test_images, print_arguments, PredictConfig
32 33 34 35 36 37 38 39

# Global dictionary
MOT_SUPPORT_MODELS = {
    'JDE',
    'FairMOT',
}


40
class JDE_Detector(Detector):
41 42 43 44
    """
    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
45
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
46
        run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
47
        batch_size (int): size of pre batch in inference
48 49 50 51 52 53 54 55 56 57 58 59
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
    """

    def __init__(self,
                 pred_config,
                 model_dir,
60
                 device='CPU',
61
                 run_mode='fluid',
62
                 batch_size=1,
63 64 65 66 67 68
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False):
69 70 71
        super(JDE_Detector, self).__init__(
            pred_config=pred_config,
            model_dir=model_dir,
72
            device=device,
73 74
            run_mode=run_mode,
            batch_size=batch_size,
75 76 77 78 79 80
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
81
        assert batch_size == 1, "The JDE Detector only supports batch size=1 now"
82 83
        assert pred_config.tracker, "Tracking model should have tracker"
        tp = pred_config.tracker
84 85
        min_box_area = tp['min_box_area'] if 'min_box_area' in tp else 200
        vertical_ratio = tp['vertical_ratio'] if 'vertical_ratio' in tp else 1.6
86 87 88
        conf_thres = tp['conf_thres'] if 'conf_thres' in tp else 0.
        tracked_thresh = tp['tracked_thresh'] if 'tracked_thresh' in tp else 0.7
        metric_type = tp['metric_type'] if 'metric_type' in tp else 'euclidean'
G
George Ni 已提交
89
        self.tracker = JDETracker(
90 91
            min_box_area=min_box_area,
            vertical_ratio=vertical_ratio,
G
George Ni 已提交
92 93 94
            conf_thres=conf_thres,
            tracked_thresh=tracked_thresh,
            metric_type=metric_type)
95

96
    def postprocess(self, pred_dets, pred_embs, threshold):
97
        online_targets = self.tracker.update(pred_dets, pred_embs)
98 99
        if online_targets == []:
            return [pred_dets[0][:4]], [pred_dets[0][4]], [1]
100
        online_tlwhs, online_ids = [], []
G
George Ni 已提交
101
        online_scores = []
102 103 104
        for t in online_targets:
            tlwh = t.tlwh
            tid = t.track_id
G
George Ni 已提交
105
            tscore = t.score
106
            if tscore < threshold: continue
107 108 109 110 111 112 113
            if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
            if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
                    3] > self.tracker.vertical_ratio:
                continue
            online_tlwhs.append(tlwh)
            online_ids.append(tid)
            online_scores.append(tscore)
G
George Ni 已提交
114
        return online_tlwhs, online_scores, online_ids
115

116
    def predict(self, image_list, threshold=0.5, warmup=0, repeats=1):
117 118
        '''
        Args:
119
            image_list (list): list of image
120 121
            threshold (float): threshold of predicted box' score
        Returns:
122
            online_tlwhs, online_scores, online_ids (np.ndarray)
123 124
        '''
        self.det_times.preprocess_time_s.start()
125
        inputs = self.preprocess(image_list)
126
        self.det_times.preprocess_time_s.end()
G
George Ni 已提交
127

128 129 130 131 132 133
        pred_dets, pred_embs = None, None
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

G
George Ni 已提交
134 135 136 137 138 139
        for i in range(warmup):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()

140 141 142 143 144 145 146 147 148 149 150
        self.det_times.inference_time_s.start()
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            pred_dets = boxes_tensor.copy_to_cpu()
            embs_tensor = self.predictor.get_output_handle(output_names[1])
            pred_embs = embs_tensor.copy_to_cpu()
        self.det_times.inference_time_s.end(repeats=repeats)

        self.det_times.postprocess_time_s.start()
151 152
        online_tlwhs, online_scores, online_ids = self.postprocess(
            pred_dets, pred_embs, threshold)
153 154
        self.det_times.postprocess_time_s.end()
        self.det_times.img_num += 1
G
George Ni 已提交
155
        return online_tlwhs, online_scores, online_ids
156 157


G
George Ni 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def write_mot_results(filename, results, data_type='mot'):
    if data_type in ['mot', 'mcmot', 'lab']:
        save_format = '{frame},{id},{x1},{y1},{w},{h},{score},-1,-1,-1\n'
    elif data_type == 'kitti':
        save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
    else:
        raise ValueError(data_type)

    with open(filename, 'w') as f:
        for frame_id, tlwhs, tscores, track_ids in results:
            if data_type == 'kitti':
                frame_id -= 1
            for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
                if track_id < 0:
                    continue
                x1, y1, w, h = tlwh
                x2, y2 = x1 + w, y1 + h
                line = save_format.format(
                    frame=frame_id,
                    id=track_id,
                    x1=x1,
                    y1=y1,
                    x2=x2,
                    y2=y2,
                    w=w,
                    h=h,
                    score=score)
                f.write(line)


G
George Ni 已提交
188 189
def predict_image(detector, image_list):
    results = []
190
    image_list.sort()
G
George Ni 已提交
191 192 193
    for i, img_file in enumerate(image_list):
        frame = cv2.imread(img_file)
        if FLAGS.run_benchmark:
194
            detector.predict([frame], FLAGS.threshold, warmup=10, repeats=10)
G
George Ni 已提交
195 196 197 198 199 200 201
            cm, gm, gu = get_current_memory_mb()
            detector.cpu_mem += cm
            detector.gpu_mem += gm
            detector.gpu_util += gu
            print('Test iter {}, file name:{}'.format(i, img_file))
        else:
            online_tlwhs, online_scores, online_ids = detector.predict(
202
                [frame], FLAGS.threshold)
G
George Ni 已提交
203 204 205 206 207
            online_im = mot_vis.plot_tracking(
                frame, online_tlwhs, online_ids, online_scores, frame_id=i)
            if FLAGS.save_images:
                if not os.path.exists(FLAGS.output_dir):
                    os.makedirs(FLAGS.output_dir)
208 209 210 211
                img_name = os.path.split(img_file)[-1]
                out_path = os.path.join(FLAGS.output_dir, img_name)
                cv2.imwrite(out_path, online_im)
                print("save result to: " + out_path)
G
George Ni 已提交
212 213


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
def predict_video(detector, camera_id):
    if camera_id != -1:
        capture = cv2.VideoCapture(camera_id)
        video_name = 'mot_output.mp4'
    else:
        capture = cv2.VideoCapture(FLAGS.video_file)
        video_name = os.path.split(FLAGS.video_file)[-1]
    fps = 30
    frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
    print('frame_count', frame_count)
    width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    # yapf: disable
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    # yapf: enable
    if not os.path.exists(FLAGS.output_dir):
        os.makedirs(FLAGS.output_dir)
    out_path = os.path.join(FLAGS.output_dir, video_name)
G
George Ni 已提交
232 233
    if not FLAGS.save_images:
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
234 235
    frame_id = 0
    timer = MOTTimer()
G
George Ni 已提交
236
    results = []
237 238 239 240 241
    while (1):
        ret, frame = capture.read()
        if not ret:
            break
        timer.tic()
G
George Ni 已提交
242
        online_tlwhs, online_scores, online_ids = detector.predict(
243
            [frame], FLAGS.threshold)
244 245
        timer.toc()

G
George Ni 已提交
246 247
        results.append((frame_id + 1, online_tlwhs, online_scores, online_ids))
        fps = 1. / timer.average_time
G
George Ni 已提交
248
        im = mot_vis.plot_tracking(
249 250 251
            frame,
            online_tlwhs,
            online_ids,
G
George Ni 已提交
252
            online_scores,
253
            frame_id=frame_id,
G
George Ni 已提交
254
            fps=fps)
G
George Ni 已提交
255 256 257 258 259
        if FLAGS.save_images:
            save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            cv2.imwrite(
G
George Ni 已提交
260
                os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
G
George Ni 已提交
261 262
        else:
            writer.write(im)
263 264 265 266 267 268
        frame_id += 1
        print('detect frame:%d' % (frame_id))
        if camera_id != -1:
            cv2.imshow('Tracking Detection', im)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
G
George Ni 已提交
269
    if FLAGS.save_mot_txts:
G
George Ni 已提交
270 271 272
        result_filename = os.path.join(FLAGS.output_dir,
                                       video_name.split('.')[-2] + '.txt')
        write_mot_results(result_filename, results)
G
George Ni 已提交
273 274 275

    if FLAGS.save_images:
        save_dir = os.path.join(FLAGS.output_dir, video_name.split('.')[-2])
F
Feng Ni 已提交
276
        cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format(
G
George Ni 已提交
277 278 279 280 281
            save_dir, out_path)
        os.system(cmd_str)
        print('Save video in {}.'.format(out_path))
    else:
        writer.release()
282 283 284


def main():
G
George Ni 已提交
285
    pred_config = PredictConfig(FLAGS.model_dir)
286
    detector = JDE_Detector(
287 288
        pred_config,
        FLAGS.model_dir,
289
        device=FLAGS.device,
290 291 292 293 294 295 296 297 298 299 300 301
        run_mode=FLAGS.run_mode,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn)

    # predict from video file or camera video stream
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
        predict_video(detector, FLAGS.camera_id)
    else:
G
George Ni 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        # predict from image
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
        predict_image(detector, img_list)
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
            mems = {
                'cpu_rss_mb': detector.cpu_mem / len(img_list),
                'gpu_rss_mb': detector.gpu_mem / len(img_list),
                'gpu_util': detector.gpu_util * 100 / len(img_list)
            }
            perf_info = detector.det_times.report(average=True)
            model_dir = FLAGS.model_dir
            mode = FLAGS.run_mode
            model_info = {
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
            }
            data_info = {
                'batch_size': 1,
                'shape': "dynamic_shape",
                'data_num': perf_info['img_num']
            }
            det_log = PaddleInferBenchmark(detector.config, model_info,
                                           data_info, perf_info, mems)
            det_log('MOT')
328 329 330 331 332 333 334


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
335 336 337
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
338 339

    main()