softmax_with_cross_entropy_op.cu 4.1 KB
Newer Older
C
caoying03 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#define EIGEN_USE_GPU
C
caoying03 已提交
16

C
caoying03 已提交
17
#include "paddle/framework/op_registry.h"
C
caoying03 已提交
18 19
#include "paddle/operators/cross_entropy_op.h"
#include "paddle/operators/math/softmax.h"
20

C
caoying03 已提交
21 22 23 24 25 26 27 28 29 30
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
__global__ void CrossEntropyKernel(T* out, const T* softmax_out,
                                   const int* label, const int batch_size,
                                   const int class_num) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
C
caoying03 已提交
31 32 33 34
  if (i < batch_size) {
    PADDLE_ASSERT(label[i] >= 0 && label[i] < class_num);
    out[i] = -tolerable_value(std::log(softmax_out[i * class_num + label[i]]));
  }
C
caoying03 已提交
35 36 37 38 39 40 41 42
}

template <typename T>
__global__ void CrossEntropyWithSoftmaxGradKernel(T* softmax_out,
                                                  const int* label,
                                                  const int batch_size,
                                                  const int class_num) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
C
caoying03 已提交
43 44 45 46
  if (i < batch_size) {
    PADDLE_ASSERT(label[i] >= 0 && label[i] < class_num);
    softmax_out[i * class_num + label[i]] -= 1.;
  }
C
caoying03 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
}

template <typename T>
class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");

    // Calculate ths softmax outputs.
    const Tensor* logits = context.Input<Tensor>("Logits");
    Tensor* softmax = context.Output<Tensor>("Softmax");
    softmax->mutable_data<T>(context.GetPlace());
    math::SoftmaxFunctor<platform::GPUPlace, T>()(logits, softmax, context);
    T* softmax_out = softmax->data<T>();

    // Calculate the cross entropy loss based on hard labels.
    const int* label_data = context.Input<Tensor>("Label")->data<int>();
C
caoying03 已提交
65
    Tensor* loss = context.Output<Tensor>("Loss");
C
caoying03 已提交
66 67 68 69 70 71 72
    loss->mutable_data<T>(context.GetPlace());
    T* loss_data = loss->data<T>();

    const int batch_size = logits->dims()[0];
    const int class_num = logits->dims()[1];
    int block = 512;
    int grid = (batch_size + block - 1) / block;
73

C
caoying03 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    CrossEntropyKernel<T><<<grid, block>>>(loss_data, softmax_out, label_data,
                                           batch_size, class_num);
  }
};

template <typename T>
class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");

    Tensor* logit_grad =
        context.Output<Tensor>(framework::GradVarName("Logits"));
    logit_grad->ShareDataWith<T>(*context.Input<Tensor>("Softmax"));
    T* logit_grad_data = logit_grad->data<T>();

    const int batch_size = logit_grad->dims()[0];
    const int class_num = logit_grad->dims()[1];

    const int* label_data = context.Input<Tensor>("Label")->data<int>();

    const int block = 512;
    const int grid = (batch_size + block - 1) / block;

    CrossEntropyWithSoftmaxGradKernel<T><<<grid, block>>>(
        logit_grad_data, label_data, batch_size, class_num);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(softmax_with_cross_entropy,
                       ops::SoftmaxWithCrossEntropyCUDAKernel<float>);
REGISTER_OP_GPU_KERNEL(softmax_with_cross_entropy_grad,
                       ops::SoftmaxWithCrossEntropyGradCUDAKernel<float>);