paddle_inference_api_anakin_engine_tester.cc 2.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yan Chunwei 已提交
15
#include <gflags/gflags.h>
C
cuichaowen 已提交
16
#include <glog/logging.h>
Y
Yan Chunwei 已提交
17 18
#include <gtest/gtest.h>

C
cuichaowen 已提交
19 20
#include "paddle/contrib/inference/paddle_inference_api.h"

Y
Yan Chunwei 已提交
21 22
DEFINE_string(model, "", "Directory of the inference model.");

Y
Yan Chunwei 已提交
23 24
namespace paddle {

C
cuichaowen 已提交
25
AnakinConfig GetConfig() {
Y
Yan Chunwei 已提交
26
  AnakinConfig config;
Y
Yan Chunwei 已提交
27
  config.model_file = FLAGS_model;
C
cuichaowen 已提交
28 29 30 31
  config.device = 0;
  config.max_batch_size = 1;
  return config;
}
Y
Yan Chunwei 已提交
32

C
cuichaowen 已提交
33 34 35
TEST(inference, anakin) {
  AnakinConfig config = GetConfig();
  auto predictor =
Y
Yan Chunwei 已提交
36
      CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(config);
C
cuichaowen 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

  float data[1 * 3 * 224 * 224] = {1.0f};

  PaddleBuf buf{.data = data, .length = sizeof(data)};
  PaddleTensor tensor{.name = "input_0",
                      .shape = std::vector<int>({1, 3, 224, 224}),
                      .data = buf,
                      .dtype = PaddleDType::FLOAT32};

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);

  float data_out[1000];

  PaddleBuf buf_out{.data = data_out, .length = sizeof(data)};
  PaddleTensor tensor_out{.name = "prob_out",
                          .shape = std::vector<int>({1000, 1}),
                          .data = buf_out,
                          .dtype = PaddleDType::FLOAT32};

  std::vector<PaddleTensor> outputs(1, tensor_out);

  ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));

  float* data_o = static_cast<float*>(outputs[0].data.data);
  for (size_t j = 0; j < 1000; ++j) {
    LOG(INFO) << "output[" << j << "]: " << data_o[j];
  }
Y
Yan Chunwei 已提交
65 66 67
}

}  // namespace paddle