export_model.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Q
qingqing01 已提交
19 20 21 22 23 24
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

25
import paddle
26 27 28 29 30
from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser
import ppdet.utils.checkpoint as checkpoint
31
from ppdet.utils.export_utils import save_infer_model, dump_infer_config
32
from ppdet.utils.check import check_config, check_version, enable_static_mode
33 34 35 36 37 38 39 40 41 42 43

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
from paddleslim.quant import quant_aware, convert


def main():
    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
44
    check_config(cfg)
45
    check_version()
46 47

    main_arch = cfg.architecture
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

    # Use CPU for exporting inference model instead of GPU
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
            inputs_def = cfg['TestReader']['inputs_def']
            inputs_def['use_dataloader'] = False
            feed_vars, _ = model.build_inputs(**inputs_def)
            test_fetches = model.test(feed_vars)
    infer_prog = infer_prog.clone(True)

    not_quant_pattern = []
    if FLAGS.not_quant_pattern:
        not_quant_pattern = FLAGS.not_quant_pattern
    config = {
        'weight_quantize_type': 'channel_wise_abs_max',
        'activation_quantize_type': 'moving_average_abs_max',
        'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'],
        'not_quant_pattern': not_quant_pattern
    }

    infer_prog = quant_aware(infer_prog, place, config, for_test=True)

    exe.run(startup_prog)
    checkpoint.load_params(exe, infer_prog, cfg.weights)

    infer_prog, int8_program = convert(
        infer_prog, place, config, save_int8=True)

83 84
    FLAGS.output_dir = os.path.join(FLAGS.output_dir, 'float')
    save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
85

86 87
    FLAGS.output_dir = os.path.join(FLAGS.output_dir, 'int')
    save_infer_model(FLAGS, exe, feed_vars, test_fetches, int8_program)
88 89 90


if __name__ == '__main__':
91
    enable_static_mode()
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    parser = ArgsParser()
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output model files.")
    parser.add_argument(
        "--not_quant_pattern",
        nargs='+',
        type=str,
        help="Layers which name_scope contains string in not_quant_pattern will not be quantized"
    )

    FLAGS = parser.parse_args()
    main()