evaluators.py 18.9 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.config_parser import *
from default_decorators import *

L
luotao02 已提交
18
__all__ = ["evaluator_base","classification_error_evaluator", "auc_evaluator",
Z
zhangjinchao01 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
           "pnpair_evaluator", "precision_recall_evaluator",
           "ctc_error_evaluator", "chunk_evaluator", "sum_evaluator",
           "column_sum_evaluator", "value_printer_evaluator",
           "gradient_printer_evaluator", "maxid_printer_evaluator",
           "maxframe_printer_evaluator", "seqtext_printer_evaluator",
           "classification_error_printer_evaluator"]


class EvaluatorAttribute(object):
    FOR_CLASSIFICATION = 1
    FOR_REGRESSION = 1 << 1
    FOR_RANK = 1 << 2
    FOR_PRINT = 1 << 3
    FOR_UTILS = 1 << 4

    KEYS = [
        "for_classification",
        "for_regression",
        "for_rank",
        "for_print",
        "for_utils"
    ]

    @staticmethod
    def to_key(idx):
        tmp = 1
        for i in xrange(0, len(EvaluatorAttribute.KEYS)):
            if idx == tmp:
                return EvaluatorAttribute.KEYS[i]
            else:
                tmp = (tmp << 1)


def evaluator(*attrs):
    def impl(method):
        for attr in attrs:
            setattr(method, EvaluatorAttribute.to_key(attr), True)
        method.is_evaluator = True
        return method
    return impl

def evaluator_base(
        input,
        type,
        label=None,
        weight=None,
        name=None,
        chunk_scheme=None,
        num_chunk_types=None,
68 69 70 71 72 73
        classification_threshold=None,
        positive_label=None,
        dict_file=None,
        result_file=None,
        num_results=None,
        delimited=None):
Z
zhangjinchao01 已提交
74
    """
L
luotao02 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    Evaluator will evaluate the network status while training/testing.

    User can use evaluator by classify/regression job. For example.

    ..  code-block:: python

        classify(prediction, output, evaluator=classification_error_evaluator)

    And user could define evaluator separately as follow.

    ..  code-block:: python

        classification_error_evaluator("ErrorRate", prediction, label)

    The evaluator often contains a name parameter. It will also be printed when
    evaluating network. The printed information may look like the following.

    ..  code-block:: text

         Batch=200 samples=20000 AvgCost=0.679655 CurrentCost=0.662179 Eval:
         classification_error_evaluator=0.4486
         CurrentEval: ErrorRate=0.3964
97

Z
zhangjinchao01 已提交
98 99 100 101 102 103 104 105 106 107
    :param input: Input layers, a object of LayerOutput or a list of
                  LayerOutput.
    :type input: list|LayerOutput
    :param label: An input layer containing the ground truth label.
    :type label: LayerOutput|None
    :param weight: An input layer which is a weight for each sample.
                   Each evaluator may calculate differently to use this weight.
    :type weight: LayerOutput.
    """
    # inputs type assertions.
108 109 110 111
    assert classification_threshold is None or isinstance(
        classification_threshold, float)
    assert positive_label is None or isinstance(positive_label, int)
    assert num_results is None or isinstance(num_results, int)
Z
zhangjinchao01 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

    if not isinstance(input, list):
        input = [input]

    if label:
        input.append(label)
    if weight:
        input.append(weight)

    Evaluator(
        name=name,
        type=type,
        inputs=[i.name for i in input],
        chunk_scheme=chunk_scheme,
        num_chunk_types=num_chunk_types,
        classification_threshold=classification_threshold,
        positive_label=positive_label,
        dict_file=dict_file,
        result_file=result_file,
        delimited=delimited)

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def classification_error_evaluator(
        input,
        label,
        name=None,
        weight=None,
140
        threshold=None):
Z
zhangjinchao01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    """
    Classification Error Evaluator. It will print error rate for classification.

    The classification error is:

    ..  math::

        classification\\_error = \\frac{NumOfWrongPredicts}{NumOfAllSamples}

    The simple usage is:

    .. code-block:: python

       eval =  classification_error_evaluator(input=prob,label=lbl)

    :param name: Evaluator name.
    :type name: basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: basestring
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. And will just multiply to NumOfWrongPredicts
                  and NumOfAllSamples. So, the elements of weight are all one,
                  then means not set weight. The larger weight it is, the more
                  important this sample is.
    :type weight: LayerOutput
    :param threshold: The classification threshold.
    :type threshold: float
    :return: None.
    """

    evaluator_base(name=name,
                   type="classification_error",
                   input=input,
                   label=label,
                   weight=weight,
                   classification_threshold=threshold,
                   )

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def auc_evaluator(
        input,
        label,
        name=None,
        weight=None,
        ):
    """
    Auc Evaluator which adapts to binary classification.

    The simple usage:

    .. code-block:: python

       eval = auc_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: None|basestring
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1].
    :type weight: LayerOutput
    """
    evaluator_base(name=name,
                   type="last-column-auc",
                   input=input,
                   label=label,
                   weight=weight)

@evaluator(EvaluatorAttribute.FOR_RANK)
@wrap_name_default()
def pnpair_evaluator(
        input,
        label,
        info,
        name=None,
        weight=None,
        ):
    """
    Positive-negative pair rate Evaluator which adapts to rank task like
    learning to rank. This evaluator must contain at least three layers.

    The simple usage:

    .. code-block:: python

       eval = pnpair_evaluator(input, info, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: LayerOutput
    :param info: Label layer name. (TODO, explaination)
    :type info: LayerOutput
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
    evaluator_base(name=name,
                   type="pnpair",
                   input=input,
                   label=label,
                   info=info,
                   weight=weight)

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def precision_recall_evaluator(
        input,
        label,
257
        positive_label=None,
Z
zhangjinchao01 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        weight=None,
        name=None,
        ):
    """
    An Evaluator to calculate precision and recall, F1-score.
    It is adapt to the task with multiple labels.

    - If positive_label=-1, it will print the average precision, recall,
      F1-score of all labels.

    - If use specify positive_label, it will print the precision, recall,
      F1-score of this label.

    The simple usage:

    .. code-block:: python

       eval = precision_recall_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name. The output prediction of network.
    :type input: LayerOutput
    :param label: Label layer name.
    :type label: LayerOutput
    :param positive_label: The input label layer.
    :type positive_label: LayerOutput.
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
    evaluator_base(name=name,
                   type="precision_recall",
                   input=input,
                   label=label,
                   positive_label=positive_label,
                   weight=weight)

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def ctc_error_evaluator(
        input,
300
        label,
Z
zhangjinchao01 已提交
301 302 303 304 305 306 307 308 309
        name=None,
        ):
    """
    This evaluator is to calculate sequence-to-sequence edit distance.

    The simple usage is :

    .. code-block:: python

310
       eval = ctc_error_evaluator(input=input, label=lbl)
Z
zhangjinchao01 已提交
311 312 313

    :param name: Evaluator name.
    :type name: None|basestring
314
    :param input: Input Layer. Should be the same as the input for ctc_layer.
Z
zhangjinchao01 已提交
315
    :type input: LayerOutput
316 317
    :param label: input label, which is a data_layer. Should be the same as the
                  label for ctc_layer
318
    :type label: LayerOutput
Z
zhangjinchao01 已提交
319 320 321
    """
    evaluator_base(name=name,
                   type="ctc_edit_distance",
322 323
                   input=input,
                   label=label)
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497

@evaluator(EvaluatorAttribute.FOR_CLASSIFICATION)
@wrap_name_default()
def chunk_evaluator(
        input,
        name=None,
        chunk_scheme=None,
        num_chunk_types=None,
        ):
    """
    Chunk evaluator is used to evaluate segment labelling accuracy for a
    sequence. It calculates the chunk detection F1 score.

    A chunk is correctly detected if its beginning, end and type are correct.
    Other chunk type is ignored.

    For each label in the label sequence, we have:

    .. code-block:: python

       tagType = label % numTagType
       chunkType = label / numTagType
       otherChunkType = numChunkTypes

    The total number of different labels is numTagType*numChunkTypes+1.
    We support 4 labelling scheme.
    The tag type for each of the scheme is shown as follows:

    .. code-block:: python

       Scheme Begin Inside End   Single
       plain  0     -      -     -
       IOB    0     1      -     -
       IOE    -     0      1     -
       IOBES  0     1      2     3

    'plain' means the whole chunk must contain exactly the same chunk label.

    The simple usage is:

    .. code-block:: python

       eval = chunk_evaluator(input)

    :param input: The input layers.
    :type input: LayerOutput
    :param name: The Evaluator name, it is not necessary.
    :type name: basename|None
    :param chunk_scheme: The labelling schemes support 4 types. It is one of
                         "IOB", "IOE", "IOBES", "plain".This Evaluator must
                         contain this chunk_scheme.
    :type chunk_scheme: basestring
    :param num_chunk_types: number of chunk types other than "other"
    """
    evaluator_base(name=name,
                   type="chunk",
                   input=input,
                   chunk_scheme=chunk_scheme,
                   num_chunk_types=num_chunk_types)

@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def sum_evaluator(
        input,
        name=None,
        weight=None,
        ):
    """
    An Evaluator to sum the result of input.

    The simple usage:

    .. code-block:: python

       eval = sum_evaluator(input)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name.
    :type input: LayerOutput
    :param weight: Weight Layer name. It should be a matrix with size
                  [sample_num, 1]. (TODO, explaination)
    :type weight: LayerOutput
    """
    evaluator_base(name=name,
                   type="sum",
                   input=input,
                   weight=weight)

@evaluator(EvaluatorAttribute.FOR_UTILS)
@wrap_name_default()
def column_sum_evaluator(
        input,
        name=None,
        weight=None,
        ):
    """
    This Evaluator is used to sum the last column of input.

    The simple usage is:

    .. code-block:: python

       eval = column_sum_evaluator(input, label)

    :param name: Evaluator name.
    :type name: None|basestring
    :param input: Input Layer name.
    :type input: LayerOutput
    """
    evaluator_base(name=name,
                   type="last-column-sum",
                   input=input,
                   weight=weight)

"""
The following are printer Evaluators which are usually used to
print the result, like value or gradient of input layers, the
results generated in machine translation, the classification error etc.
"""
@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def value_printer_evaluator(
        input,
        name=None,
        ):
    """
    This Evaluator is used to print the values of input layers. It contains
    one or more input layers.

    The simple usage is:

    .. code-block:: python

       eval = value_printer_evaluator(input)

    :param input: One or more input layers.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
    evaluator_base(name=name,
                   type="value_printer",
                   input=input)

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def gradient_printer_evaluator(
        input,
        name=None,
        ):
    """
    This Evaluator is used to print the gradient of input layers. It contains
    one or more input layers.

    The simple usage is:

    .. code-block:: python

       eval = gradient_printer_evaluator(input)

    :param input: One or more input layers.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
    evaluator_base(name=name,
                   type="gradient_printer",
                   input=input)

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxid_printer_evaluator(
        input,
498
        num_results=None,
Z
zhangjinchao01 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        name=None,
        ):
    """
    This Evaluator is used to print maximum top k values and their indexes
    of each row of input layers. It contains one or more input layers.
    k is specified by num_results.

    The simple usage is:

    .. code-block:: python

       eval = maxid_printer_evaluator(input)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param num_results: This number is used to specify the top k numbers.
                        It is 1 by default.
    :type num_results: int.
    :param name: Evaluator name.
    :type name: None|basestring
    """
    evaluator_base(name=name,
                   type="max_id_printer",
522 523
                   input=input,
                   num_results=num_results)
Z
zhangjinchao01 已提交
524 525 526 527 528

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def maxframe_printer_evaluator(
        input,
529
        num_results=None,
Z
zhangjinchao01 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
        name=None,
        ):
    """
    This Evaluator is used to print the top k frames of each input layers.
    The input layers should contain sequences info or sequences type.
    k is specified by num_results.
    It contains one or more input layers.

    Note:
        The width of each frame is 1.

    The simple usage is:

    .. code-block:: python

       eval = maxframe_printer_evaluator(input)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param name: Evaluator name.
    :type name: None|basestring
    """
    evaluator_base(name=name,
                   type="max_frame_printer",
                   input=input,
                   num_results=num_results)

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def seqtext_printer_evaluator(
        input,
561 562 563
        result_file,
        dict_file=None,
        delimited=None,
Z
zhangjinchao01 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
        name=None,
        ):
    """
    Sequence text printer will print text according to index matrix and a
    dictionary. There can be multiple input to this layer:

    1. If there is only one input, the input must be a matrix containing
    the sequence of indices;

    2. If there are more than one input, the first input should be ids,
    and are interpreted as sample ids.

    The output format will be:

    1. sequence without sub-sequence, and there is probability.

    .. code-block:: python

         id \t prob space_seperated_tokens_from_dictionary_according_to_seq

    2. sequence without sub-sequence, and there is not probability.

    .. code-block:: python

         id \t space_seperated_tokens_from_dictionary_according_to_seq

    3. sequence with sub-sequence, and there is not probability.

    .. code-block:: python

         id \t space_seperated_tokens_from_dictionary_according_to_sub_seq
         \t \t space_seperated_tokens_from_dictionary_according_to_sub_seq
         ...

    Typically SequenceTextPrinter layer takes output of maxid or RecurrentGroup
    with maxid (when generating) as an input.

    The simple usage is:

    .. code-block:: python

       eval = seqtext_printer_evaluator(input,
                                        dict_file=dict_file,
                                        result_file=result_file)

    :param input: Input Layer name.
    :type input: LayerOutput|list
    :param dict_file: The input dictionary which contains a list of tokens.
    :type dict_file: basestring
    :param result_file: The file is to save the results.
    :type result_file: basestring
    :param delimited: Whether to use space to separate output tokens.
                Default is True. No space is added if set to False.
    :type delimited: bool
    :param name: Evaluator name.
    :type name: None|basestring
    """
621
    assert isinstance(result_file, basestring)
Z
zhangjinchao01 已提交
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    evaluator_base(name=name,
                   type="seq_text_printer",
                   input=input,
                   dict_file=dict_file,
                   result_file=result_file,
                   delimited=delimited)

@evaluator(EvaluatorAttribute.FOR_PRINT)
@wrap_name_default()
def classification_error_printer_evaluator(
        input,
        label,
        threshold=0.5,
        name=None,
        ):
    """
    This Evaluator is used to print the classification error of each sample.

    The simple usage is:

    .. code-block:: python

       eval = classification_error_printer_evaluator(input)

    :param input: Input layer.
    :type input: LayerOutput
    :param label: Input label layer.
    :type label: LayerOutput
    :param name: Evaluator name.
    :type name: None|basestring
    """
    evaluator_base(name=name,
                   type="classification_error_printer",
                   input=input,
                   label=label,
                   classification_threshold=threshold)