test_pool2d_op.py 6.5 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
C
chengduoZH 已提交
14 15
import unittest
import numpy as np
16 17

import paddle.v2.fluid.core as core
C
chengduoZH 已提交
18 19 20
from op_test import OpTest


C
chengduoZH 已提交
21
def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0):
C
chengduoZH 已提交
22
    N, C, H, W = x.shape
C
chengduoZH 已提交
23 24
    if global_pool == 1:
        ksize = [H, W]
C
chengduoZH 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
    H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
    W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
    out = np.zeros((N, C, H_out, W_out))
    for i in xrange(H_out):
        for j in xrange(W_out):
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            c_start = np.max((j * strides[1] - paddings[1], 0))
            c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out


C
chengduoZH 已提交
40
def avg_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0):
C
chengduoZH 已提交
41
    N, C, H, W = x.shape
C
chengduoZH 已提交
42 43
    if global_pool == 1:
        ksize = [H, W]
C
chengduoZH 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
    W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
    out = np.zeros((N, C, H_out, W_out))
    for i in xrange(H_out):
        for j in xrange(W_out):
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            c_start = np.max((j * strides[1] - paddings[1], 0))
            c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.sum(x_masked, axis=(2, 3)) / (
                (r_end - r_start) * (c_end - c_start))
    return out


class TestPool2d_Op(OpTest):
    def setUp(self):
62
        self.use_cudnn = False
C
chengduoZH 已提交
63
        self.init_test_case()
C
chengduoZH 已提交
64
        self.init_global_pool()
C
chengduoZH 已提交
65 66
        self.init_op_type()
        self.init_pool_type()
C
fix bug  
chengduoZH 已提交
67 68
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
C
chengduoZH 已提交
69 70
        input = np.random.random(self.shape).astype("float32")
        output = self.pool2D_forward_naive(input, self.ksize, self.strides,
C
fix bug  
chengduoZH 已提交
71 72
                                           self.paddings,
                                           self.global_pool).astype("float32")
73
        self.inputs = {'X': input}
C
chengduoZH 已提交
74 75 76 77 78

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
79 80
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
81 82
            'use_cudnn': self.use_cudnn,
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
C
chengduoZH 已提交
83 84
        }

Y
Yu Yang 已提交
85
        self.outputs = {'Out': output.astype('float32')}
C
chengduoZH 已提交
86 87

    def test_check_output(self):
88 89 90 91 92
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
93 94

    def test_check_grad(self):
95 96 97 98 99
        if self.use_cudnn and self.pool_type != "max":
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
100
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
101

C
chengduoZH 已提交
102
    def init_test_case(self):
C
chengduoZH 已提交
103 104 105 106 107
        self.shape = [2, 3, 5, 5]
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [0, 0]

C
chengduoZH 已提交
108 109 110 111 112
    def init_op_type(self):
        self.op_type = "pool2d"

    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
113 114 115 116
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = True
C
chengduoZH 已提交
117

C
chengduoZH 已提交
118

C
chengduoZH 已提交
119
class TestCase1(TestPool2d_Op):
C
chengduoZH 已提交
120
    def init_test_case(self):
C
chengduoZH 已提交
121
        self.shape = [2, 3, 7, 7]
C
chengduoZH 已提交
122 123
        self.ksize = [3, 3]
        self.strides = [1, 1]
C
chengduoZH 已提交
124
        self.paddings = [0, 0]
C
chengduoZH 已提交
125

C
chengduoZH 已提交
126 127 128 129 130
    def init_op_type(self):
        self.op_type = "pool2d"

    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
131 132 133 134
        self.pool2D_forward_naive = avg_pool2D_forward_naive

    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
135

C
chengduoZH 已提交
136

C
chengduoZH 已提交
137
class TestCase2(TestPool2d_Op):
C
chengduoZH 已提交
138
    def init_test_case(self):
C
chengduoZH 已提交
139
        self.shape = [2, 3, 7, 7]
C
chengduoZH 已提交
140 141 142 143
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1]

C
chengduoZH 已提交
144 145 146 147 148
    def init_op_type(self):
        self.op_type = "pool2d"

    def init_pool_type(self):
        self.pool_type = "avg"
C
chengduoZH 已提交
149
        self.pool2D_forward_naive = avg_pool2D_forward_naive
C
chengduoZH 已提交
150

C
chengduoZH 已提交
151 152
    def init_global_pool(self):
        self.global_pool = False
C
chengduoZH 已提交
153

C
chengduoZH 已提交
154

C
chengduoZH 已提交
155
class TestCase3(TestPool2d_Op):
C
chengduoZH 已提交
156 157 158 159 160
    def init_op_type(self):
        self.op_type = "pool2d"

    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
161
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
162

C
chengduoZH 已提交
163 164

class TestCase4(TestCase1):
C
chengduoZH 已提交
165 166 167 168 169 170 171
    def init_op_type(self):
        self.op_type = "pool2d"

    def init_pool_type(self):
        self.pool_type = "max"
        self.pool2D_forward_naive = max_pool2D_forward_naive

C
chengduoZH 已提交
172 173

class TestCase5(TestCase2):
C
chengduoZH 已提交
174
    def init_op_type(self):
C
chengduoZH 已提交
175
        self.op_type = "pool2d"
C
chengduoZH 已提交
176 177 178

    def init_pool_type(self):
        self.pool_type = "max"
C
chengduoZH 已提交
179
        self.pool2D_forward_naive = max_pool2D_forward_naive
C
chengduoZH 已提交
180 181


182 183
#--------------------test pool2d--------------------
class TestCUDNNCase1(TestPool2d_Op):
C
chengduoZH 已提交
184
    def init_op_type(self):
185 186
        self.use_cudnn = True
        self.op_type = "pool2d"
C
chengduoZH 已提交
187 188


189
class TestCUDNNCase2(TestCase1):
C
chengduoZH 已提交
190
    def init_op_type(self):
191 192
        self.use_cudnn = True
        self.op_type = "pool2d"
C
chengduoZH 已提交
193 194


195
class TestCUDNNCase3(TestCase2):
C
chengduoZH 已提交
196
    def init_op_type(self):
197 198
        self.use_cudnn = True
        self.op_type = "pool2d"
C
chengduoZH 已提交
199 200


201
class TestCUDNNCase4(TestCase3):
C
chengduoZH 已提交
202
    def init_op_type(self):
203 204
        self.use_cudnn = True
        self.op_type = "pool2d"
C
chengduoZH 已提交
205 206


207
class TestCUDNNCase5(TestCase4):
C
chengduoZH 已提交
208
    def init_op_type(self):
209 210
        self.use_cudnn = True
        self.op_type = "pool2d"
C
chengduoZH 已提交
211

C
chengduoZH 已提交
212

213
class TestCUDNNCase6(TestCase5):
C
chengduoZH 已提交
214
    def init_op_type(self):
215 216
        self.use_cudnn = True
        self.op_type = "pool2d"
C
chengduoZH 已提交
217

C
chengduoZH 已提交
218 219 220

if __name__ == '__main__':
    unittest.main()