test_adagrad_op.py 6.0 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15
import unittest
import numpy as np
Q
QI JUN 已提交
16 17
import paddle.v2.fluid.core as core
from paddle.v2.fluid.op import Operator
18
from op_test import OpTest
Q
QI JUN 已提交
19
import math
20 21


K
Kexin Zhao 已提交
22 23 24 25
class TestAdagradOp1(OpTest):
    ''' Test Adagrad operator with explicit attributes
    '''

26 27 28 29 30 31
    def setUp(self):
        self.op_type = "adagrad"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")
K
Kexin Zhao 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
        lr = 0.01
        epsilon = 1e-8

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'LearningRate': np.array([lr]).astype("float32")
        }

        self.attrs = {'epsilon': epsilon}

        moment_out = moment + grad * grad
        param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)

        self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}

    def test_check_output(self):
        self.check_output()


class TestAdagradOp2(OpTest):
    ''' Test Adagrad operator with default attributes
    '''
56

K
Kexin Zhao 已提交
57 58 59 60 61 62 63
    def setUp(self):
        self.op_type = "adagrad"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        moment = np.zeros((123, 321)).astype("float32")
        lr = 0.01
64 65
        epsilon = 1e-6

K
Kexin Zhao 已提交
66 67 68 69 70 71
        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Moment': moment,
            'LearningRate': np.array([lr]).astype("float32")
        }
72

K
Kexin Zhao 已提交
73
        self.attrs = {'epsilon': epsilon}
74 75

        moment_out = moment + grad * grad
76
        param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
77

K
Kexin Zhao 已提交
78
        self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
79 80 81 82 83

    def test_check_output(self):
        self.check_output()


Q
QI JUN 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
class TestSparseAdagradOp(unittest.TestCase):
    def check_with_place(self, place):
        scope = core.Scope()

        # create and initialize Grad Variable   
        height = 10
        rows = [0, 4, 7, 4]
        row_numel = 12

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        np_array = np.ones((len(rows), row_numel)).astype("float32")
        np_array[0, 0] = 2.0
        np_array[2, 8] = 4.0

        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(np_array, place)

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and initialize moment Variable
        moment = scope.var('Moment').get_tensor()
        moment_np_array = np.full((height, row_numel), 2.0).astype("float32")
        moment.set(moment_np_array, place)

        # create and run sgd operator
        adagrad_op = Operator(
            "adagrad",
            Param='Param',
            Grad='Grad',
            ParamOut='Param',
            Moment='Moment',
            MomentOut='Moment',
            LearningRate='LearningRate',
            epsilon=2.0)

D
dzhwinter 已提交
129
        adagrad_op.run(scope, place)
Q
QI JUN 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

        # get and compare moment result
        moment_result_array = np.array(moment)

        self.assertAlmostEqual(6.0, moment_result_array[rows[0], 0])
        self.assertAlmostEqual(3.0, moment_result_array[rows[0], 2])
        self.assertAlmostEqual(2.0, moment_result_array[1, 0])
        # 2.0 + (1.0 + 1.0)^2
        self.assertAlmostEqual(6.0, moment_result_array[rows[1], 10])
        self.assertAlmostEqual(6.0, moment_result_array[rows[3], 4])

        self.assertAlmostEqual(2.0, moment_result_array[5, 8])
        self.assertAlmostEqual(3.0, moment_result_array[rows[2], 1])
        self.assertAlmostEqual(18.0, moment_result_array[rows[2], 8])

        # get and compare param result
        result_array = np.array(param)

        def get_out(param, lr, grad, m, epsilon):
            return param - lr * grad / (math.sqrt(m) + epsilon)

        self.assertAlmostEqual(
            get_out(5.0, 2.0, 2.0, 6.0, 2.0),
            result_array[rows[0], 0],
            places=5)
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 1.0, 3.0, 2.0),
            result_array[rows[0], 2],
            places=5)
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[1, 0], places=5)

        # grad_merge = 1.0 + 1.0
        # m = 6.0
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 2.0, 6.0, 2.0),
            result_array[rows[1], 10],
            places=5)

        self.assertAlmostEqual(
            get_out(5.0, 2.0, 0.0, 2.0, 2.0), result_array[5, 8], places=5)
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 1.0, 3.0, 2.0),
            result_array[rows[2], 1],
            places=5)
        self.assertAlmostEqual(
            get_out(5.0, 2.0, 4.0, 18.0, 2.0),
            result_array[rows[2], 8],
            places=5)

    def test_sparse_adagrad(self):
        places = [core.CPUPlace()]
        if core.is_compile_gpu():
D
dzhwinter 已提交
183
            places.append(core.CUDAPlace(0))
Q
QI JUN 已提交
184 185 186 187
        for place in places:
            self.check_with_place(place)


188 189
if __name__ == "__main__":
    unittest.main()