main.cc 13.0 KB
Newer Older
C
cnn 已提交
1

Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>

#include <iostream>
C
cnn 已提交
19
#include <filesystem>
Q
qingqing01 已提交
20 21
#include <string>
#include <vector>
G
Guanghua Yu 已提交
22
#include <numeric>
Q
qingqing01 已提交
23 24
#include <sys/types.h>
#include <sys/stat.h>
C
cnn 已提交
25
#include <math.h>
Q
qingqing01 已提交
26 27 28 29 30 31 32 33 34 35

#ifdef _WIN32
#include <direct.h>
#include <io.h>
#elif LINUX
#include <stdarg.h>
#include <sys/stat.h>
#endif

#include "include/object_detector.h"
36
#include <gflags/gflags.h>
Q
qingqing01 已提交
37 38 39


DEFINE_string(model_dir, "", "Path of inference model");
G
Guanghua Yu 已提交
40 41
DEFINE_string(image_file, "", "Path of input image");
DEFINE_string(image_dir, "", "Dir of input image, `image_file` has a higher priority.");
C
cnn 已提交
42
DEFINE_int32(batch_size, 1, "batch_size");
G
Guanghua Yu 已提交
43 44
DEFINE_string(video_file, "", "Path of input video, `video_file` or `camera_id` has a highest priority.");
DEFINE_int32(camera_id, -1, "Device id of camera to predict");
Q
qingqing01 已提交
45
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU");
G
Guanghua Yu 已提交
46 47
DEFINE_double(threshold, 0.5, "Threshold of score.");
DEFINE_string(output_dir, "output", "Directory of output visualization files.");
48
DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16/trt_int8)");
Q
qingqing01 已提交
49 50
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute");
DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark");
G
Guanghua Yu 已提交
51 52
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU");
DEFINE_int32(cpu_threads, 1, "Num of threads with CPU");
53
DEFINE_bool(use_dynamic_shape, false, "Trt use dynamic shape or not");
54 55 56
DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI");
DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI");
DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI");
G
Guanghua Yu 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
DEFINE_bool(trt_calib_mode, false, "If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True");

void PrintBenchmarkLog(std::vector<double> det_time, int img_num){
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
  LOG(INFO) << "ir_optim: " << "True";
  LOG(INFO) << "enable_memory_optim: " << "True";
  int has_trt = FLAGS_run_mode.find("trt");
  if (has_trt >= 0) {
    LOG(INFO) << "enable_tensorrt: " << "True";
    std::string precision = FLAGS_run_mode.substr(4, 8);
    LOG(INFO) << "precision: " << precision;
  } else {
    LOG(INFO) << "enable_tensorrt: " << "False";
    LOG(INFO) << "precision: " << "fp32";
  }
  LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
  LOG(INFO) << "----------------------- Data info -----------------------";
76
  LOG(INFO) << "batch_size: " << FLAGS_batch_size;
G
Guanghua Yu 已提交
77 78 79 80 81 82 83 84 85 86 87 88
  LOG(INFO) << "input_shape: " << "dynamic shape";
  LOG(INFO) << "----------------------- Model info -----------------------";
  FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of("/") + 1);
  LOG(INFO) << "model_name: " << FLAGS_model_dir.substr(FLAGS_model_dir.find_last_of('/') + 1);
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total number of predicted data: " << img_num
            << " and total time spent(s): "
            << std::accumulate(det_time.begin(), det_time.end(), 0);
  LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2];
}
Q
qingqing01 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

static std::string DirName(const std::string &filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
#ifdef _WIN32
  ret = _mkdir(path.c_str());
#else
  ret = mkdir(path.c_str(), 0755);
#endif  // !_WIN32
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

void PredictVideo(const std::string& video_path,
                  PaddleDetection::ObjectDetector* det) {
  // Open video
  cv::VideoCapture capture;
  if (FLAGS_camera_id != -1){
    capture.open(FLAGS_camera_id);
  }else{
    capture.open(video_path.c_str());
  }
  if (!capture.isOpened()) {
    printf("can not open video : %s\n", video_path.c_str());
    return;
  }

  // Get Video info : resolution, fps
  int video_width = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_WIDTH));
  int video_height = static_cast<int>(capture.get(CV_CAP_PROP_FRAME_HEIGHT));
  int video_fps = static_cast<int>(capture.get(CV_CAP_PROP_FPS));

  // Create VideoWriter for output
  cv::VideoWriter video_out;
  std::string video_out_path = "output.mp4";
  video_out.open(video_out_path.c_str(),
                 0x00000021,
                 video_fps,
                 cv::Size(video_width, video_height),
                 true);
  if (!video_out.isOpened()) {
    printf("create video writer failed!\n");
    return;
  }

  std::vector<PaddleDetection::ObjectResult> result;
C
cnn 已提交
164
  std::vector<int> bbox_num;
G
Guanghua Yu 已提交
165
  std::vector<double> det_times;
Q
qingqing01 已提交
166 167 168 169 170
  auto labels = det->GetLabelList();
  auto colormap = PaddleDetection::GenerateColorMap(labels.size());
  // Capture all frames and do inference
  cv::Mat frame;
  int frame_id = 0;
C
cnn 已提交
171
  bool is_rbox = false;
Q
qingqing01 已提交
172 173 174 175
  while (capture.read(frame)) {
    if (frame.empty()) {
      break;
    }
C
cnn 已提交
176 177 178
    std::vector<cv::Mat> imgs;
    imgs.push_back(frame);
    det->Predict(imgs, 0.5, 0, 1, &result, &bbox_num, &det_times);
Q
qingqing01 已提交
179
    for (const auto& item : result) {
C
cnn 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
      if (item.rect.size() > 6){
      is_rbox = true;
      printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
          item.class_id,
          item.confidence,
          item.rect[0],
          item.rect[1],
          item.rect[2],
          item.rect[3],
          item.rect[4],
          item.rect[5],
          item.rect[6],
          item.rect[7]);
      }
      else{
        printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
          item.class_id,
          item.confidence,
          item.rect[0],
          item.rect[1],
          item.rect[2],
          item.rect[3]);
      }
   }

   cv::Mat out_im = PaddleDetection::VisualizeResult(
        frame, result, labels, colormap, is_rbox);

Q
qingqing01 已提交
208 209 210 211 212 213 214
    video_out.write(out_im);
    frame_id += 1;
  }
  capture.release();
  video_out.release();
}

C
cnn 已提交
215 216
void PredictImage(const std::vector<std::string> all_img_paths,
                  const int batch_size,
Q
qingqing01 已提交
217 218 219 220
                  const double threshold,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  const std::string& output_dir = "output") {
G
Guanghua Yu 已提交
221
  std::vector<double> det_t = {0, 0, 0};
C
cnn 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
  int steps = ceil(float(all_img_paths.size()) / batch_size);
  printf("total images = %d, batch_size = %d, total steps = %d\n",
                all_img_paths.size(), batch_size, steps);
  for (int idx = 0; idx < steps; idx++) {
    std::vector<cv::Mat> batch_imgs;
    int left_image_cnt = all_img_paths.size() - idx * batch_size;
    if (left_image_cnt > batch_size) {
      left_image_cnt = batch_size;
    }
    for (int bs = 0; bs < left_image_cnt; bs++) {
      std::string image_file_path = all_img_paths.at(idx * batch_size+bs);
      cv::Mat im = cv::imread(image_file_path, 1);
      batch_imgs.insert(batch_imgs.end(), im);
    }
    
G
Guanghua Yu 已提交
237 238
    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
C
cnn 已提交
239
    std::vector<int> bbox_num;
G
Guanghua Yu 已提交
240
    std::vector<double> det_times;
C
cnn 已提交
241
    bool is_rbox = false;
G
Guanghua Yu 已提交
242
    if (run_benchmark) {
C
cnn 已提交
243
      det->Predict(batch_imgs, threshold, 10, 10, &result, &bbox_num,  &det_times);
G
Guanghua Yu 已提交
244
    } else {
C
cnn 已提交
245 246 247 248 249 250 251
      det->Predict(batch_imgs, 0.5, 0, 1, &result, &bbox_num, &det_times);
      // get labels and colormap
      auto labels = det->GetLabelList();
      auto colormap = PaddleDetection::GenerateColorMap(labels.size());

      int item_start_idx = 0;
      for (int i = 0; i < left_image_cnt; i++) {
252
        std::cout << all_img_paths.at(idx * batch_size + i) << " bbox_num " << bbox_num[i] << std::endl;
C
cnn 已提交
253 254
        if (bbox_num[i] <= 1) {
            continue;
C
cnn 已提交
255
        }
C
cnn 已提交
256 257
        for (int j = 0; j < bbox_num[i]; j++) {
          PaddleDetection::ObjectResult item = result[item_start_idx + j];
258 259 260
          if (item.confidence < threshold) {
            continue;
          }
C
cnn 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
          if (item.rect.size() > 6){
            is_rbox = true;
            printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
              item.class_id,
              item.confidence,
              item.rect[0],
              item.rect[1],
              item.rect[2],
              item.rect[3],
              item.rect[4],
              item.rect[5],
              item.rect[6],
              item.rect[7]);
          }
          else{
            printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
              item.class_id,
              item.confidence,
              item.rect[0],
              item.rect[1],
              item.rect[2],
              item.rect[3]);
          }
C
cnn 已提交
284
        }
C
cnn 已提交
285
        item_start_idx = item_start_idx + bbox_num[i];
G
Guanghua Yu 已提交
286 287
      }
      // Visualization result
C
cnn 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
      int bbox_idx = 0;
      for (int bs = 0; bs < batch_imgs.size(); bs++) {
        if (bbox_num[bs] <= 1) {
            continue;
        }
        cv::Mat im = batch_imgs[bs];
        std::vector<PaddleDetection::ObjectResult> im_result;
        for (int k = 0; k < bbox_num[bs]; k++) {
          im_result.push_back(result[bbox_idx+k]);
        }
        bbox_idx += bbox_num[bs];
        cv::Mat vis_img = PaddleDetection::VisualizeResult(
            im, im_result, labels, colormap, is_rbox);
        std::vector<int> compression_params;
        compression_params.push_back(CV_IMWRITE_JPEG_QUALITY);
        compression_params.push_back(95);
        std::string output_path(output_dir);
        if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
          output_path += OS_PATH_SEP;
        }
308
        std::string image_file_path = all_img_paths.at(idx * batch_size + bs);
C
cnn 已提交
309 310 311
        output_path += image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::imwrite(output_path, vis_img, compression_params);
        printf("Visualized output saved as %s\n", output_path.c_str());
G
Guanghua Yu 已提交
312
      }
Q
qingqing01 已提交
313
    }
G
Guanghua Yu 已提交
314 315 316
    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
Q
qingqing01 已提交
317
  }
C
cnn 已提交
318
  PrintBenchmarkLog(det_t, all_img_paths.size());
Q
qingqing01 已提交
319 320 321 322 323 324
}

int main(int argc, char** argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if (FLAGS_model_dir.empty()
G
Guanghua Yu 已提交
325
      || (FLAGS_image_file.empty() && FLAGS_image_dir.empty() && FLAGS_video_file.empty())) {
Q
qingqing01 已提交
326
    std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ "
G
Guanghua Yu 已提交
327
                << "--image_file=/PATH/TO/INPUT/IMAGE/" << std::endl;
Q
qingqing01 已提交
328 329 330
    return -1;
  }
  if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32"
331 332
      || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) {
    std::cout << "run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'.";
Q
qingqing01 已提交
333 334 335
    return -1;
  }
  // Load model and create a object detector
G
Guanghua Yu 已提交
336
  PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_use_mkldnn,
337 338
                        FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_batch_size,FLAGS_gpu_id, FLAGS_use_dynamic_shape,
                        FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape, FLAGS_trt_calib_mode);
Q
qingqing01 已提交
339
  // Do inference on input video or image
G
Guanghua Yu 已提交
340 341 342
  if (!FLAGS_video_file.empty() || FLAGS_camera_id != -1) {
    PredictVideo(FLAGS_video_file, &det);
  } else if (!FLAGS_image_file.empty() || !FLAGS_image_dir.empty()) {
Q
qingqing01 已提交
343 344 345
    if (!PathExists(FLAGS_output_dir)) {
      MkDirs(FLAGS_output_dir);
    }
C
cnn 已提交
346 347
    std::vector<std::string> all_img_paths;
    std::vector<cv::String> cv_all_img_paths;
G
Guanghua Yu 已提交
348
    if (!FLAGS_image_file.empty()) {
C
cnn 已提交
349
      all_img_paths.push_back(FLAGS_image_file);
C
cnn 已提交
350
      if (FLAGS_batch_size > 1) {
351 352
        std::cout << "batch_size should be 1, when image_file is not None" << std::endl;
        FLAGS_batch_size = 1;
C
cnn 已提交
353
      }
G
Guanghua Yu 已提交
354
    } else {
C
cnn 已提交
355 356 357 358
        cv::glob(FLAGS_image_dir, cv_all_img_paths);
        for (const auto & img_path : cv_all_img_paths) {
          all_img_paths.push_back(img_path);
        }
G
Guanghua Yu 已提交
359
    }
C
cnn 已提交
360 361
    PredictImage(all_img_paths, FLAGS_batch_size, FLAGS_threshold,
		 FLAGS_run_benchmark, &det, FLAGS_output_dir);
Q
qingqing01 已提交
362 363 364
  }
  return 0;
}