batch_norm_mkldnn_op.cc 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
using mkldnn::memory;

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

namespace {
template <typename T>
struct bn_type_traits {
  using op_type = T;
  using op_desc = typename op_type::desc;
  using op_prim = typename op_type::primitive_desc;
};

template <typename T, typename Container>
void copy_to_weights(T scale_begin, T scale_end, T shift_begin, T shift_end,
                     Container *c) {
  auto it = std::begin(*c);

  std::copy(scale_begin, scale_end, std::inserter(*c, it));
  std::copy(
      shift_begin, shift_end,
      std::inserter(*c, std::next(it, std::distance(scale_begin, scale_end))));
}

template <typename Op, typename... Args>
void run_batch_norm_op(Args &&... args) {
  Op batch_norm_op{args...};

  std::vector<mkldnn::primitive> pipeline;
  pipeline.push_back(batch_norm_op);
  mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
}

template <typename T>
inline void *cast_const_to_void(const T *t) {
  return static_cast<void *>(const_cast<T *>(t));
}
}  // namespace

template <typename T>
class BatchNormMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto data_layout_str = ctx.Attr<std::string>("data_layout");
    auto data_layout = framework::StringToDataLayout(data_layout_str);
    PADDLE_ENFORCE(data_layout == framework::DataLayout::kNCHW,
                   "MKLDNN batch normalization handles only NCHW data layout");

    const float epsilon = ctx.Attr<float>("epsilon");
    const float momentum = ctx.Attr<float>("momentum");
    const bool is_test = ctx.Attr<bool>("is_test");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *mean = ctx.Input<Tensor>("Mean");
    const auto *variance = ctx.Input<Tensor>("Variance");

    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    auto *batch_mean = ctx.Output<Tensor>("SavedMean");
    auto *batch_variance = ctx.Output<Tensor>("SavedVariance");

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");

    y->mutable_data<T>(ctx.GetPlace());
    mean_out->mutable_data<T>(ctx.GetPlace());
    variance_out->mutable_data<T>(ctx.GetPlace());

    if (!is_test) {
      batch_mean->mutable_data<T>(ctx.GetPlace());
      batch_variance->mutable_data<T>(ctx.GetPlace());
    }

    auto propagation = is_test == true ? mkldnn::prop_kind::forward_scoring
                                       : mkldnn::prop_kind::forward_training;

    auto dims = paddle::framework::vectorize2int(x->dims());

    auto src_md =
        MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
    auto dst_md =
        MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);

    auto src_pd = mkldnn::memory::primitive_desc{src_md, mkldnn_engine};
    auto dst_pd = mkldnn::memory::primitive_desc{dst_md, mkldnn_engine};

    auto src = mkldnn::memory{src_pd, cast_const_to_void(x->data<T>())};
    auto dst = mkldnn::memory{dst_pd, y->data<T>()};

    unsigned flags = mkldnn::use_scale_shift;
    if (is_test) flags |= mkldnn::use_global_stats;

    using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;
    auto batch_norm_fwd_desc =
        bn_fwd_types::op_desc{propagation, src_md, epsilon, flags};
    auto batch_norm_fwd_pd =
        bn_fwd_types::op_prim{batch_norm_fwd_desc, mkldnn_engine};

    const unsigned int ic = dims[1];

    // MKLDNN requires a single piece of memory for scale and shift/bias data
    const size_t scaleshift_size = 2 * ic;
    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);

    copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
                    shift->data<T>() + ic, &scaleshift_data);

    auto scaleshift_memory = mkldnn::memory{
        batch_norm_fwd_pd.weights_primitive_desc(), scaleshift_data.data()};

    if (is_test) {
      auto mean_memory = mkldnn::memory{batch_norm_fwd_pd.mean_primitive_desc(),
                                        cast_const_to_void(mean->data<T>())};

      auto variance_memory =
          mkldnn::memory{batch_norm_fwd_pd.variance_primitive_desc(),
                         cast_const_to_void(variance->data<T>())};

      run_batch_norm_op<typename bn_fwd_types::op_type>(
          batch_norm_fwd_pd, src, (const mkldnn::primitive::at &)mean_memory,
          (const mkldnn::primitive::at &)variance_memory, scaleshift_memory,
          dst);
    } else {
      auto mean_memory =
          mkldnn::memory{batch_norm_fwd_pd.mean_primitive_desc(),
                         cast_const_to_void(batch_mean->data<T>())};

      auto variance_memory =
          mkldnn::memory{batch_norm_fwd_pd.variance_primitive_desc(),
                         cast_const_to_void(batch_variance->data<T>())};

      run_batch_norm_op<bn_fwd_types::op_type>(batch_norm_fwd_pd, src,
                                               scaleshift_memory, dst,
                                               mean_memory, variance_memory);
    }

    if (!is_test) {
      const unsigned int in = dims[0];
      const unsigned int sample_size = x->numel() / in / ic;

      // saved_xx is use just in this batch of data
      EigenVectorArrayMap<T> saved_mean_e(
          batch_mean->mutable_data<T>(ctx.GetPlace()), ic);
      EigenVectorArrayMap<T> saved_variance_e(
          batch_variance->mutable_data<T>(ctx.GetPlace()), ic);
      saved_mean_e.setZero();
      saved_variance_e.setZero();

      const unsigned int x_arr_size = in * ic;
      ConstEigenArrayMap<T> x_arr(x->data<T>(), sample_size, x_arr_size);
      for (unsigned int nc = 0; nc < x_arr_size; ++nc) {
        saved_mean_e(nc % ic) += x_arr.col(nc).sum();
      }
      saved_mean_e /= in * sample_size;
      for (unsigned int nc = 0; nc < x_arr_size; ++nc) {
        saved_variance_e(nc % ic) +=
            (x_arr.col(nc) - saved_mean_e(nc % ic)).matrix().squaredNorm();
      }
      saved_variance_e /= in * sample_size;

      ConstEigenVectorArrayMap<T> mean_arr{mean->data<T>(), ic};
      ConstEigenVectorArrayMap<T> variance_arr{variance->data<T>(), ic};

      EigenVectorArrayMap<T> running_mean_arr(
          mean_out->mutable_data<T>(ctx.GetPlace()), ic);
      EigenVectorArrayMap<T> running_var_arr(
          variance_out->mutable_data<T>(ctx.GetPlace()), ic);

      auto one_minus_momentum = 1. - momentum;
      running_mean_arr =
          mean_arr * momentum + saved_mean_e * one_minus_momentum;
      running_var_arr =
          variance_arr * momentum + saved_variance_e * one_minus_momentum;
    }
  }
};

template <typename T>
class BatchNormMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext &ctx) const override {
    auto data_layout_str = ctx.Attr<std::string>("data_layout");
    auto data_layout = framework::StringToDataLayout(data_layout_str);
    PADDLE_ENFORCE(data_layout == framework::DataLayout::kNCHW,
                   "MKLDNN batch normalization handles only NCHW data layout");

    auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();

    const float epsilon = ctx.Attr<float>("epsilon");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *shift = ctx.Input<Tensor>("Bias");
    const auto *batch_mean = ctx.Input<Tensor>("SavedMean");
    const auto *batch_variance = ctx.Input<Tensor>("SavedVariance");

    const auto *diff_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto *diff_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *diff_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *diff_shift = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    diff_x->mutable_data<T>(ctx.GetPlace());
    diff_scale->mutable_data<T>(ctx.GetPlace());
    diff_shift->mutable_data<T>(ctx.GetPlace());

    auto dims = paddle::framework::vectorize2int(x->dims());
    unsigned flags = mkldnn::use_scale_shift | !mkldnn::use_global_stats;

    auto src_md =
        MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
    auto dst_md =
        MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
    auto diff_src_md =
        MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);
    auto diff_dst_md =
        MKLDNNMemDesc(dims, memory::data_type::f32, memory::format::nchw);

    using bn_bwd_types = bn_type_traits<mkldnn::batch_normalization_backward>;
    using bn_fwd_types = bn_type_traits<mkldnn::batch_normalization_forward>;

    auto batch_norm_fwd_desc = bn_fwd_types::op_desc{
        mkldnn::prop_kind::forward_training, src_md, epsilon, flags};
    auto batch_norm_fwd_pd =
        bn_fwd_types::op_prim{batch_norm_fwd_desc, mkldnn_engine};

    auto batch_norm_bwd_desc = bn_bwd_types::op_desc{
        mkldnn::prop_kind::backward, diff_dst_md, dst_md, epsilon, flags};
    auto batch_norm_bwd_pd = bn_bwd_types::op_prim{
        batch_norm_bwd_desc, mkldnn_engine, batch_norm_fwd_pd};

    auto src = mkldnn::memory{{src_md, mkldnn_engine},
                              cast_const_to_void(x->data<T>())};

    auto mean = mkldnn::memory{batch_norm_bwd_pd.mean_primitive_desc(),
                               cast_const_to_void(batch_mean->data<T>())};

    auto variance =
        mkldnn::memory{batch_norm_bwd_pd.variance_primitive_desc(),
                       cast_const_to_void(batch_variance->data<T>())};

    auto diff_dst = mkldnn::memory{{diff_dst_md, mkldnn_engine},
                                   cast_const_to_void(diff_y->data<T>())};

    const unsigned int ic = dims[1];

    const size_t scaleshift_size = 2 * ic;

    std::vector<T> scaleshift_data;
    scaleshift_data.reserve(scaleshift_size);
    copy_to_weights(scale->data<T>(), scale->data<T>() + ic, shift->data<T>(),
                    shift->data<T>() + ic, &scaleshift_data);

    auto scaleshift_memory = mkldnn::memory{
        batch_norm_bwd_pd.weights_primitive_desc(), scaleshift_data.data()};

    std::vector<T> diff_scaleshift_data;
    diff_scaleshift_data.reserve(scaleshift_size);
    copy_to_weights(diff_scale->data<T>(), diff_scale->data<T>() + ic,
                    diff_shift->data<T>(), diff_shift->data<T>() + ic,
                    &diff_scaleshift_data);

    auto diff_scaleshift_memory =
        mkldnn::memory{batch_norm_bwd_pd.diff_weights_primitive_desc(),
                       diff_scaleshift_data.data()};

    auto diff_src = mkldnn::memory{{diff_src_md, mkldnn_engine},
                                   static_cast<void *>(diff_x->data<T>())};

    run_batch_norm_op<bn_bwd_types::op_type>(
        batch_norm_bwd_pd, src, mean, variance, diff_dst, scaleshift_memory,
        diff_src, diff_scaleshift_memory);

    auto it = std::begin(diff_scaleshift_data);
    std::copy(it, std::next(it, ic), diff_scale->data<T>());
    std::copy(std::next(it, ic), std::end(diff_scaleshift_data),
              diff_shift->data<T>());
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(batch_norm, MKLDNN, paddle::platform::CPUPlace,
                   ops::BatchNormMKLDNNOpKernel<float>);
REGISTER_OP_KERNEL(batch_norm_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::BatchNormMKLDNNGradOpKernel<float>);