x2coco.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
#!/usr/bin/env python
# coding: utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import glob
import json
import os
import os.path as osp
import sys
import shutil

import numpy as np
import PIL.ImageDraw


class MyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj)


def getbbox(self, points):
    polygons = points
    mask = self.polygons_to_mask([self.height, self.width], polygons)
    return self.mask2box(mask)


S
SunAhong1993 已提交
47
def images_labelme(data, num):
48 49 50 51 52 53 54
    image = {}
    image['height'] = data['imageHeight']
    image['width'] = data['imageWidth']
    image['id'] = num + 1
    image['file_name'] = data['imagePath'].split('/')[-1]
    return image

W
wangguanzhong 已提交
55

S
SunAhong1993 已提交
56 57 58 59 60 61
def images_cityscape(data, num, img_file):
    image = {}
    image['height'] = data['imgHeight']
    image['width'] = data['imgWidth']
    image['id'] = num + 1
    image['file_name'] = img_file
W
wangguanzhong 已提交
62
    return image
S
SunAhong1993 已提交
63

64 65 66 67 68 69 70 71 72

def categories(label, labels_list):
    category = {}
    category['supercategory'] = 'component'
    category['id'] = len(labels_list) + 1
    category['name'] = label
    return category


S
SunAhong1993 已提交
73
def annotations_rectangle(points, label, image_num, object_num, label_to_num):
74 75 76 77 78 79
    annotation = {}
    seg_points = np.asarray(points).copy()
    seg_points[1, :] = np.asarray(points)[2, :]
    seg_points[2, :] = np.asarray(points)[1, :]
    annotation['segmentation'] = [list(seg_points.flatten())]
    annotation['iscrowd'] = 0
S
SunAhong1993 已提交
80
    annotation['image_id'] = image_num + 1
81 82 83 84 85 86 87
    annotation['bbox'] = list(
        map(float, [
            points[0][0], points[0][1], points[1][0] - points[0][0], points[1][
                1] - points[0][1]
        ]))
    annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
    annotation['category_id'] = label_to_num[label]
S
SunAhong1993 已提交
88
    annotation['id'] = object_num + 1
89 90 91
    return annotation


W
wangguanzhong 已提交
92 93
def annotations_polygon(height, width, points, label, image_num, object_num,
                        label_to_num):
94 95 96
    annotation = {}
    annotation['segmentation'] = [list(np.asarray(points).flatten())]
    annotation['iscrowd'] = 0
S
SunAhong1993 已提交
97
    annotation['image_id'] = image_num + 1
98 99 100
    annotation['bbox'] = list(map(float, get_bbox(height, width, points)))
    annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
    annotation['category_id'] = label_to_num[label]
S
SunAhong1993 已提交
101
    annotation['id'] = object_num + 1
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    return annotation


def get_bbox(height, width, points):
    polygons = points
    mask = np.zeros([height, width], dtype=np.uint8)
    mask = PIL.Image.fromarray(mask)
    xy = list(map(tuple, polygons))
    PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
    mask = np.array(mask, dtype=bool)
    index = np.argwhere(mask == 1)
    rows = index[:, 0]
    clos = index[:, 1]
    left_top_r = np.min(rows)
    left_top_c = np.min(clos)
    right_bottom_r = np.max(rows)
    right_bottom_c = np.max(clos)
    return [
        left_top_c, left_top_r, right_bottom_c - left_top_c,
        right_bottom_r - left_top_r
    ]


S
SunAhong1993 已提交
125
def deal_json(ds_type, img_path, json_path):
126 127 128 129 130 131
    data_coco = {}
    label_to_num = {}
    images_list = []
    categories_list = []
    annotations_list = []
    labels_list = []
S
SunAhong1993 已提交
132
    image_num = -1
S
SunAhong1993 已提交
133
    object_num = -1
134 135
    for img_file in os.listdir(img_path):
        img_label = img_file.split('.')[0]
W
wangguanzhong 已提交
136 137
        if img_file.split('.')[
                -1] not in ['bmp', 'jpg', 'jpeg', 'png', 'JPEG', 'JPG', 'PNG']:
S
SunAhong1993 已提交
138
            continue
139 140
        label_file = osp.join(json_path, img_label + '.json')
        print('Generating dataset from:', label_file)
S
SunAhong1993 已提交
141
        image_num = image_num + 1
142 143
        with open(label_file) as f:
            data = json.load(f)
S
SunAhong1993 已提交
144 145 146
            if ds_type == 'labelme':
                images_list.append(images_labelme(data, image_num))
            elif ds_type == 'cityscape':
W
wangguanzhong 已提交
147
                images_list.append(images_cityscape(data, image_num, img_file))
S
SunAhong1993 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160
            if ds_type == 'labelme':
                for shapes in data['shapes']:
                    object_num = object_num + 1
                    label = shapes['label']
                    if label not in labels_list:
                        categories_list.append(categories(label, labels_list))
                        labels_list.append(label)
                        label_to_num[label] = len(labels_list)
                    points = shapes['points']
                    p_type = shapes['shape_type']
                    if p_type == 'polygon':
                        annotations_list.append(
                            annotations_polygon(data['imageHeight'], data[
W
wangguanzhong 已提交
161 162
                                'imageWidth'], points, label, image_num,
                                                object_num, label_to_num))
163

S
SunAhong1993 已提交
164 165 166 167
                    if p_type == 'rectangle':
                        points.append([points[0][0], points[1][1]])
                        points.append([points[1][0], points[0][1]])
                        annotations_list.append(
W
wangguanzhong 已提交
168 169
                            annotations_rectangle(points, label, image_num,
                                                  object_num, label_to_num))
S
SunAhong1993 已提交
170 171 172 173 174 175 176 177 178
            elif ds_type == 'cityscape':
                for shapes in data['objects']:
                    object_num = object_num + 1
                    label = shapes['label']
                    if label not in labels_list:
                        categories_list.append(categories(label, labels_list))
                        labels_list.append(label)
                        label_to_num[label] = len(labels_list)
                    points = shapes['polygon']
179
                    annotations_list.append(
S
SunAhong1993 已提交
180
                        annotations_polygon(data['imgHeight'], data[
W
wangguanzhong 已提交
181 182
                            'imgWidth'], points, label, image_num, object_num,
                                            label_to_num))
183 184 185 186 187 188 189 190 191
    data_coco['images'] = images_list
    data_coco['categories'] = categories_list
    data_coco['annotations'] = annotations_list
    return data_coco


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
S
SunAhong1993 已提交
192
    parser.add_argument('--dataset_type', help='the type of dataset')
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    parser.add_argument('--json_input_dir', help='input annotated directory')
    parser.add_argument('--image_input_dir', help='image directory')
    parser.add_argument(
        '--output_dir', help='output dataset directory', default='../../../')
    parser.add_argument(
        '--train_proportion',
        help='the proportion of train dataset',
        type=float,
        default=1.0)
    parser.add_argument(
        '--val_proportion',
        help='the proportion of validation dataset',
        type=float,
        default=0.0)
    parser.add_argument(
        '--test_proportion',
        help='the proportion of test dataset',
        type=float,
        default=0.0)
    args = parser.parse_args()
S
SunAhong1993 已提交
213 214 215 216 217
    try:
        assert args.dataset_type in ['labelme', 'cityscape']
    except AssertionError as e:
        print('Now only support the cityscape dataset and labelme dataset!!')
        os._exit(0)
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    try:
        assert os.path.exists(args.json_input_dir)
    except AssertionError as e:
        print('The json folder does not exist!')
        os._exit(0)
    try:
        assert os.path.exists(args.image_input_dir)
    except AssertionError as e:
        print('The image folder does not exist!')
        os._exit(0)
    try:
        assert args.train_proportion + args.val_proportion + args.test_proportion == 1.0
    except AssertionError as e:
        print(
            'The sum of pqoportion of training, validation and test datase must be 1!'
        )
        os._exit(0)

    # Allocate the dataset.
    total_num = len(glob.glob(osp.join(args.json_input_dir, '*.json')))
    if args.train_proportion != 0:
        train_num = int(total_num * args.train_proportion)
        os.makedirs(args.output_dir + '/train')
    else:
        train_num = 0
    if args.val_proportion == 0.0:
        val_num = 0
        test_num = total_num - train_num
        if args.test_proportion != 0.0:
            os.makedirs(args.output_dir + '/test')
    else:
        val_num = int(total_num * args.val_proportion)
        test_num = total_num - train_num - val_num
        os.makedirs(args.output_dir + '/val')
        if args.test_proportion != 0.0:
            os.makedirs(args.output_dir + '/test')
    count = 1
    for img_name in os.listdir(args.image_input_dir):
        if count <= train_num:
            shutil.copyfile(
                osp.join(args.image_input_dir, img_name),
                osp.join(args.output_dir + '/train/', img_name))
        else:
            if count <= train_num + val_num:
                shutil.copyfile(
                    osp.join(args.image_input_dir, img_name),
                    osp.join(args.output_dir + '/val/', img_name))
            else:
                shutil.copyfile(
                    osp.join(args.image_input_dir, img_name),
                    osp.join(args.output_dir + '/test/', img_name))
        count = count + 1

    # Deal with the json files.
    if not os.path.exists(args.output_dir + '/annotations'):
        os.makedirs(args.output_dir + '/annotations')
    if args.train_proportion != 0:
W
wangguanzhong 已提交
275 276
        train_data_coco = deal_json(
            args.dataset_type, args.output_dir + '/train', args.json_input_dir)
277 278 279 280 281 282 283 284
        train_json_path = osp.join(args.output_dir + '/annotations',
                                   'instance_train.json')
        json.dump(
            train_data_coco,
            open(train_json_path, 'w'),
            indent=4,
            cls=MyEncoder)
    if args.val_proportion != 0:
285 286 287
        val_data_coco = deal_json(args.dataset_type,
                                  args.output_dir + '/val', 
                                  args.json_input_dir)
288 289 290 291 292
        val_json_path = osp.join(args.output_dir + '/annotations',
                                 'instance_val.json')
        json.dump(
            val_data_coco, open(val_json_path, 'w'), indent=4, cls=MyEncoder)
    if args.test_proportion != 0:
293 294
        test_data_coco = deal_json(args.dataset_type,
                                   args.output_dir + '/test',
295 296 297 298 299 300
                                   args.json_input_dir)
        test_json_path = osp.join(args.output_dir + '/annotations',
                                  'instance_test.json')
        json.dump(
            test_data_coco, open(test_json_path, 'w'), indent=4, cls=MyEncoder)

W
wangguanzhong 已提交
301

302 303
if __name__ == '__main__':
    main()