executor.py 14.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dzhwinter 已提交
15
import numpy as np
Y
Yang Yu 已提交
16
import contextlib
17
from framework import Program, default_main_program, Variable
18 19
from . import core

X
xuwei06 已提交
20 21 22
__all__ = [
    'Executor', 'global_scope', 'scope_guard', 'switch_scope', 'fetch_var'
]
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24 25
g_scope = core.Scope()

Y
Yu Yang 已提交
26

Y
Yang Yu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
def global_scope():
    return g_scope


def switch_scope(scope):
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


@contextlib.contextmanager
def scope_guard(scope):
    ex = switch_scope(scope)
    yield
    switch_scope(ex)


D
dzhwinter 已提交
45 46 47 48 49
def as_numpy(tensor):
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
50 51 52 53 54 55 56
    if len(lod) > 0:
        raise RuntimeError(
            "Some of your featched tensors hold LoD information. \
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
    return np.array(tensor)
D
dzhwinter 已提交
57 58


59 60 61 62 63 64 65 66 67 68 69 70
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
71 72
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
73 74 75
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
76
        A boolean value that indicates whether a block has feed operators
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
99

100 101 102 103 104 105 106 107 108
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
109 110 111
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
112

X
xuwei06 已提交
113 114 115
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


X
xuwei06 已提交
137 138 139 140
def fetch_var(name, scope=None, return_numpy=True):
    """
    Fetch the value of the variable with the given name from the given scope
    Args:
141 142 143 144
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
X
xuwei06 已提交
145 146 147 148 149 150 151 152 153 154 155
            If None, global_scope() will be used.
        return_numpy(bool): whether convert the tensor to numpy.ndarray
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
    assert isinstance(scope, core.Scope)

    var = global_scope().find_var(name)
156 157 158 159
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
160 161 162 163 164 165
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


Q
qiaolongfei 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def get_program_cache_key(feed, fetch_list):
    feed_var_names = feed.keys()

    def to_name_str(var):
        if isinstance(var, Variable):
            return var.desc.name()
        elif isinstance(var, str):
            return var
        else:
            raise TypeError(str(var) + " should be Variable or str")

    fetch_var_names = map(to_name_str, fetch_list)

    return str(feed_var_names + fetch_var_names)


Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191 192
class Executor(object):
    def __init__(self, places):
        if not isinstance(places, list) and not isinstance(places, tuple):
            places = [places]

        act_places = []
        for each in places:
            p = core.Place()
            p.set_place(each)
            act_places.append(p)

D
dzhwinter 已提交
193 194
        # TODO(dzhwinter) : only use the first place
        self.executor = core.Executor(act_places[0])
D
dzhwinter 已提交
195
        self.places = places
Q
qiaolongfei 已提交
196
        self.program_caches = dict()
D
dzhwinter 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    def aslodtensor(self, data):
        def accumulate(data):
            if not isinstance(data, list):
                return 1
            return sum([accumulate(sub) for sub in data])

        def parselod(data):
            seq_lens = [accumulate(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
                cur_len += l
                lod.append(cur_len)
            return lod

        assert len(self.places) != 0
        if not isinstance(data, list):
            # pure tensor case
            tensor = core.LoDTensor()
            tensor.set(data, self.places[0])
            return tensor
        else:
            raise RuntimeError("Current implementation lacks unittests")
            # lodtensor case
            lod = []
            if not isinstance(data[0], list):
                lod.append(parselod(data))
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            else:
                while isinstance(data[0], list):
                    lod.append(parselod(seq))
                    flattened_data = [item for seq in data for item in seq]
                    data = flattened_data
                flattened_data = np.concatenate(data, axis=0).astype("int64")
            flattened_data = flattened_data.reshape([len(flattened_data), 1])
            tensor = core.LoDTensor()
            tensor.set(flattened_data, self.places[0])
            tensor.set_lod(lod)
            return tensor
Y
Yu Yang 已提交
237

Q
Qiao Longfei 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
                global_block.prepend_op(
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
                assert isinstance(var, Variable) or isinstance(var, str), (
                    "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
        for op in program.global_block().ops:
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
                    cur_feed = self.aslodtensor(cur_feed)
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
            for i in xrange(len(fetch_list))
        ]
        return outs

Y
Yu Yang 已提交
309
    def run(self,
Y
Yu Yang 已提交
310
            program=None,
311 312
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
313
            feed_var_name='feed',
Y
Yu Yang 已提交
314
            fetch_var_name='fetch',
D
dzhwinter 已提交
315
            scope=None,
316 317
            return_numpy=True,
            use_program_cache=False):
Q
qiaolongfei 已提交
318 319 320 321
        """ Run program by this Executor. Feed data by feed map, fetch result by fetch_list.

        Python executor takes a program, add feed operators and fetch operators to this program according
        to feed map and fetch_list. Feed map provides input data for the program. fetch_list provides
Q
qiaolongfei 已提交
322
        the variables(or names) that user want to get after program run. Note: the executor will run all
Q
qiaolongfei 已提交
323 324 325 326
        operators in the program but not only the operators dependent by the fetch_list

        :param program: the program that need to run, if not provied, then default_main_program will be used.
        :param feed: feed variable map, e.g. {"image": ImageData, "label": LableData}
Q
qiaolongfei 已提交
327 328
        :param fetch_list: a list of variable or variable names that user want to get, run will return them according
        to this list.
Q
qiaolongfei 已提交
329 330 331 332
        :param feed_var_name: the name for the input variable of feed Operator.
        :param fetch_var_name: the name for the output variable of feed Operator.
        :param scope: the scope used to run this program, you can switch it to different scope. default is global_scope
        :param return_numpy: if convert the fetched tensor to numpy
333
        :param use_program_cache: set use_program_cache to true if program not changed compare to the last step.
Q
qiaolongfei 已提交
334
        :return: result according to fetch_list.
335
        """
336 337
        if feed is None:
            feed = {}
Q
qiaolongfei 已提交
338 339
        if not isinstance(feed, dict):
            raise TypeError("feed should be a map")
340 341
        if fetch_list is None:
            fetch_list = []
Y
Yu Yang 已提交
342
        if program is None:
Y
Yu Yang 已提交
343
            program = default_main_program()
Y
Yu Yang 已提交
344

Y
Yu Yang 已提交
345 346 347
        if not isinstance(program, Program):
            raise TypeError()

Y
Yu Yang 已提交
348
        if scope is None:
Y
Yang Yu 已提交
349
            scope = global_scope()
Y
Yu Yang 已提交
350

Q
Qiao Longfei 已提交
351
        cache_key = get_program_cache_key(feed, fetch_list)
352
        if use_program_cache:
Q
Qiao Longfei 已提交
353 354 355 356 357 358 359 360 361 362
            cached_program = self._get_program_cache(cache_key)
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
            program = cached_program
363
        else:
Q
Qiao Longfei 已提交
364 365 366 367 368 369 370 371 372 373 374
            self.program_caches.pop(cache_key, None)
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
        self.executor.run(program.desc, scope, 0, True, True)
        outs = self._fetch_data(fetch_list, fetch_var_name, scope)
D
dzhwinter 已提交
375 376 377
        if return_numpy:
            outs = as_numpy(outs)
        return outs