rotated_operators.py 17.2 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence

from numbers import Number, Integral

import cv2
import numpy as np
import math
import copy

from .operators import register_op, BaseOperator
from .op_helper import poly2rbox_le135, poly2rbox_oc
from ppdet.modeling import bbox_utils
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


@register_op
class RRotate(BaseOperator):
    """ Rotate Image, Polygon, Box

    Args:
        scale (float): rotate scale
        angle (float): rotate angle
        fill_value (int, tuple): fill color
        auto_bound (bool): whether auto bound or not
    """

    def __init__(self, scale=1.0, angle=0., fill_value=0., auto_bound=True):
        super(RRotate, self).__init__()
        self.scale = scale
        self.angle = angle
        self.fill_value = fill_value
        self.auto_bound = auto_bound

    def get_rotated_matrix(self, angle, scale, h, w):
        center = ((w - 1) * 0.5, (h - 1) * 0.5)
        matrix = cv2.getRotationMatrix2D(center, -angle, scale)
        # calculate the new size
        cos = np.abs(matrix[0, 0])
        sin = np.abs(matrix[0, 1])
        new_w = h * sin + w * cos
        new_h = h * cos + w * sin
        # calculate offset
        n_w = int(np.round(new_w))
        n_h = int(np.round(new_h))
        if self.auto_bound:
            ratio = min(w / n_w, h / n_h)
            matrix = cv2.getRotationMatrix2D(center, -angle, ratio)
        else:
            matrix[0, 2] += (new_w - w) * 0.5
            matrix[1, 2] += (new_h - h) * 0.5
            w = n_w
            h = n_h
        return matrix, h, w

    def get_rect_from_pts(self, pts, h, w):
        """ get minimum rectangle of points
        """
        assert pts.shape[-1] % 2 == 0, 'the dim of input [pts] is not correct'
        min_x, min_y = np.min(pts[:, 0::2], axis=1), np.min(pts[:, 1::2],
                                                            axis=1)
        max_x, max_y = np.max(pts[:, 0::2], axis=1), np.max(pts[:, 1::2],
                                                            axis=1)
        min_x, min_y = np.clip(min_x, 0, w), np.clip(min_y, 0, h)
        max_x, max_y = np.clip(max_x, 0, w), np.clip(max_y, 0, h)
        boxes = np.stack([min_x, min_y, max_x, max_y], axis=-1)
        return boxes

    def apply_image(self, image, matrix, h, w):
        return cv2.warpAffine(
            image, matrix, (w, h), borderValue=self.fill_value)

    def apply_pts(self, pts, matrix, h, w):
        assert pts.shape[-1] % 2 == 0, 'the dim of input [pts] is not correct'
        # n is number of samples and m is two times the number of points due to (x, y)
        _, m = pts.shape
        # transpose points
        pts_ = pts.reshape(-1, 2).T
        # pad 1 to convert the points to homogeneous coordinates
        padding = np.ones((1, pts_.shape[1]), pts.dtype)
        rotated_pts = np.matmul(matrix, np.concatenate((pts_, padding), axis=0))
        return rotated_pts[:2, :].T.reshape(-1, m)

    def apply(self, sample, context=None):
        image = sample['image']
        h, w = image.shape[:2]
        matrix, h, w = self.get_rotated_matrix(self.angle, self.scale, h, w)
        sample['image'] = self.apply_image(image, matrix, h, w)
        polys = sample['gt_poly']
        # TODO: segment or keypoint to be processed 
        if len(polys) > 0:
            pts = self.apply_pts(polys, matrix, h, w)
            sample['gt_poly'] = pts
            sample['gt_bbox'] = self.get_rect_from_pts(pts, h, w)

        return sample


@register_op
class RandomRRotate(BaseOperator):
    """ Random Rotate Image
    Args:
        scale (float, tuple, list): rotate scale
        scale_mode (str): mode of scale, [range, value, None]
        angle (float, tuple, list): rotate angle
        angle_mode (str): mode of angle, [range, value, None]
        fill_value (float, tuple, list): fill value
        rotate_prob (float): probability of rotation
        auto_bound (bool): whether auto bound or not
    """

    def __init__(self,
                 scale=1.0,
                 scale_mode=None,
                 angle=0.,
                 angle_mode=None,
                 fill_value=0.,
                 rotate_prob=1.0,
                 auto_bound=True):
        super(RandomRRotate, self).__init__()
        self.scale = scale
        self.scale_mode = scale_mode
        self.angle = angle
        self.angle_mode = angle_mode
        self.fill_value = fill_value
        self.rotate_prob = rotate_prob
        self.auto_bound = auto_bound

    def get_angle(self, angle, angle_mode):
        assert not angle_mode or angle_mode in [
            'range', 'value'
        ], 'angle mode should be in [range, value, None]'
        if not angle_mode:
            return angle
        elif angle_mode == 'range':
            low, high = angle
            return np.random.rand() * (high - low) + low
        elif angle_mode == 'value':
            return np.random.choice(angle)

    def get_scale(self, scale, scale_mode):
        assert not scale_mode or scale_mode in [
            'range', 'value'
        ], 'scale mode should be in [range, value, None]'
        if not scale_mode:
            return scale
        elif scale_mode == 'range':
            low, high = scale
            return np.random.rand() * (high - low) + low
        elif scale_mode == 'value':
            return np.random.choice(scale)

    def apply(self, sample, context=None):
        if np.random.rand() > self.rotate_prob:
            return sample

        angle = self.get_angle(self.angle, self.angle_mode)
        scale = self.get_scale(self.scale, self.scale_mode)
        rotator = RRotate(scale, angle, self.fill_value, self.auto_bound)
        return rotator(sample)


@register_op
class Poly2RBox(BaseOperator):
    """ Polygon to Rotated Box, using new OpenCV definition since 4.5.1

    Args:
        filter_threshold (int, float): threshold to filter annotations
        filter_mode (str): filter mode, ['area', 'edge']
        rbox_type (str): rbox type, ['le135', 'oc']

    """

    def __init__(self, filter_threshold=4, filter_mode=None, rbox_type='le135'):
        super(Poly2RBox, self).__init__()
        self.filter_fn = lambda size: self.filter(size, filter_threshold, filter_mode)
        self.rbox_fn = poly2rbox_le135 if rbox_type == 'le135' else poly2rbox_oc

    def filter(self, size, threshold, mode):
        if mode == 'area':
            if size[0] * size[1] < threshold:
                return True
        elif mode == 'edge':
            if min(size) < threshold:
                return True
        return False

    def get_rbox(self, polys):
        valid_ids, rboxes, bboxes = [], [], []
        for i, poly in enumerate(polys):
            cx, cy, w, h, angle = self.rbox_fn(poly)
            if self.filter_fn((w, h)):
                continue
            rboxes.append(np.array([cx, cy, w, h, angle], dtype=np.float32))
            valid_ids.append(i)
            xmin, ymin = min(poly[0::2]), min(poly[1::2])
            xmax, ymax = max(poly[0::2]), max(poly[1::2])
            bboxes.append(np.array([xmin, ymin, xmax, ymax], dtype=np.float32))

        if len(valid_ids) == 0:
            rboxes = np.zeros((0, 5), dtype=np.float32)
            bboxes = np.zeros((0, 4), dtype=np.float32)
        else:
            rboxes = np.stack(rboxes)
            bboxes = np.stack(bboxes)

        return rboxes, bboxes, valid_ids

    def apply(self, sample, context=None):
        rboxes, bboxes, valid_ids = self.get_rbox(sample['gt_poly'])
        sample['gt_rbox'] = rboxes
        sample['gt_bbox'] = bboxes
        for k in ['gt_class', 'gt_score', 'gt_poly', 'is_crowd', 'difficult']:
            if k in sample:
                sample[k] = sample[k][valid_ids]

        return sample


@register_op
class Poly2Array(BaseOperator):
    """ convert gt_poly to np.array for rotated bboxes
    """

    def __init__(self):
        super(Poly2Array, self).__init__()

    def apply(self, sample, context=None):
        if 'gt_poly' in sample:
            logger.info('gt_poly shape: {}'.format(sample['gt_poly']))
            sample['gt_poly'] = np.array(
                sample['gt_poly'], dtype=np.float32).reshape((-1, 8))

        return sample


@register_op
class RResize(BaseOperator):
    def __init__(self, target_size, keep_ratio, interp=cv2.INTER_LINEAR):
        """
        Resize image to target size. if keep_ratio is True, 
        resize the image's long side to the maximum of target_size
        if keep_ratio is False, resize the image to target size(h, w)
        Args:
            target_size (int|list): image target size
            keep_ratio (bool): whether keep_ratio or not, default true
            interp (int): the interpolation method
        """
        super(RResize, self).__init__()
        self.keep_ratio = keep_ratio
        self.interp = interp
        if not isinstance(target_size, (Integral, Sequence)):
            raise TypeError(
                "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}".
                format(type(target_size)))
        if isinstance(target_size, Integral):
            target_size = [target_size, target_size]
        self.target_size = target_size

    def apply_image(self, image, scale):
        im_scale_x, im_scale_y = scale

        return cv2.resize(
            image,
            None,
            None,
            fx=im_scale_x,
            fy=im_scale_y,
            interpolation=self.interp)

    def apply_pts(self, pts, scale, size):
        im_scale_x, im_scale_y = scale
        resize_w, resize_h = size
        pts[:, 0::2] *= im_scale_x
        pts[:, 1::2] *= im_scale_y
        pts[:, 0::2] = np.clip(pts[:, 0::2], 0, resize_w)
        pts[:, 1::2] = np.clip(pts[:, 1::2], 0, resize_h)
        return pts

    def apply(self, sample, context=None):
        """ Resize the image numpy.
        """
        im = sample['image']
        if not isinstance(im, np.ndarray):
            raise TypeError("{}: image type is not numpy.".format(self))
        if len(im.shape) != 3:
            raise ImageError('{}: image is not 3-dimensional.'.format(self))

        # apply image
        im_shape = im.shape
        if self.keep_ratio:

            im_size_min = np.min(im_shape[0:2])
            im_size_max = np.max(im_shape[0:2])

            target_size_min = np.min(self.target_size)
            target_size_max = np.max(self.target_size)

            im_scale = min(target_size_min / im_size_min,
                           target_size_max / im_size_max)

            resize_h = im_scale * float(im_shape[0])
            resize_w = im_scale * float(im_shape[1])

            im_scale_x = im_scale
            im_scale_y = im_scale
        else:
            resize_h, resize_w = self.target_size
            im_scale_y = resize_h / im_shape[0]
            im_scale_x = resize_w / im_shape[1]

        im = self.apply_image(sample['image'], [im_scale_x, im_scale_y])
        sample['image'] = im.astype(np.float32)
        sample['im_shape'] = np.asarray([resize_h, resize_w], dtype=np.float32)
        if 'scale_factor' in sample:
            scale_factor = sample['scale_factor']
            sample['scale_factor'] = np.asarray(
                [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x],
                dtype=np.float32)
        else:
            sample['scale_factor'] = np.asarray(
                [im_scale_y, im_scale_x], dtype=np.float32)

        # apply bbox
        if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
            sample['gt_bbox'] = self.apply_pts(sample['gt_bbox'],
                                               [im_scale_x, im_scale_y],
                                               [resize_w, resize_h])

        # apply polygon
        if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
            sample['gt_poly'] = self.apply_pts(sample['gt_poly'],
                                               [im_scale_x, im_scale_y],
                                               [resize_w, resize_h])

        return sample


@register_op
class RandomRFlip(BaseOperator):
    def __init__(self, prob=0.5):
        """
        Args:
            prob (float): the probability of flipping image
        """
        super(RandomRFlip, self).__init__()
        self.prob = prob
        if not (isinstance(self.prob, float)):
            raise TypeError("{}: input type is invalid.".format(self))

    def apply_image(self, image):
        return image[:, ::-1, :]

    def apply_pts(self, pts, width):
        oldx = pts[:, 0::2].copy()
        pts[:, 0::2] = width - oldx - 1
        return pts

    def apply(self, sample, context=None):
        """Filp the image and bounding box.
        Operators:
            1. Flip the image numpy.
            2. Transform the bboxes' x coordinates.
              (Must judge whether the coordinates are normalized!)
            3. Transform the segmentations' x coordinates.
              (Must judge whether the coordinates are normalized!)
        Output:
            sample: the image, bounding box and segmentation part
                    in sample are flipped.
        """
        if np.random.uniform(0, 1) < self.prob:
            im = sample['image']
            height, width = im.shape[:2]
            im = self.apply_image(im)
            if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0:
                sample['gt_bbox'] = self.apply_pts(sample['gt_bbox'], width)
            if 'gt_poly' in sample and len(sample['gt_poly']) > 0:
                sample['gt_poly'] = self.apply_pts(sample['gt_poly'], width)

            sample['flipped'] = True
            sample['image'] = im
        return sample


@register_op
class VisibleRBox(BaseOperator):
    """
    In debug mode, visualize images according to `gt_box`.
    (Currently only supported when not cropping and flipping image.)
    """

    def __init__(self, output_dir='debug'):
        super(VisibleRBox, self).__init__()
        self.output_dir = output_dir
        if not os.path.isdir(output_dir):
            os.makedirs(output_dir)

    def apply(self, sample, context=None):
        image = Image.fromarray(sample['image'].astype(np.uint8))
        out_file_name = '{:012d}.jpg'.format(sample['im_id'][0])
        width = sample['w']
        height = sample['h']
        # gt_poly = sample['gt_rbox']
        gt_poly = sample['gt_poly']
        gt_class = sample['gt_class']
        draw = ImageDraw.Draw(image)
        for i in range(gt_poly.shape[0]):
            x1, y1, x2, y2, x3, y3, x4, y4 = gt_poly[i]
            draw.line(
                [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x1, y1)],
                width=2,
                fill='green')
            # draw label
            xmin = min(x1, x2, x3, x4)
            ymin = min(y1, y2, y3, y4)
            text = str(gt_class[i][0])
            tw, th = draw.textsize(text)
            draw.rectangle(
                [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill='green')
            draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))

        if 'gt_keypoint' in sample.keys():
            gt_keypoint = sample['gt_keypoint']
            if self.is_normalized:
                for i in range(gt_keypoint.shape[1]):
                    if i % 2:
                        gt_keypoint[:, i] = gt_keypoint[:, i] * height
                    else:
                        gt_keypoint[:, i] = gt_keypoint[:, i] * width
            for i in range(gt_keypoint.shape[0]):
                keypoint = gt_keypoint[i]
                for j in range(int(keypoint.shape[0] / 2)):
                    x1 = round(keypoint[2 * j]).astype(np.int32)
                    y1 = round(keypoint[2 * j + 1]).astype(np.int32)
                    draw.ellipse(
                        (x1, y1, x1 + 5, y1 + 5), fill='green', outline='green')
        save_path = os.path.join(self.output_dir, out_file_name)
        image.save(save_path, quality=95)
        return sample


@register_op
class Rbox2Poly(BaseOperator):
    """
    Convert rbbox format to poly format.
    """

    def __init__(self):
        super(Rbox2Poly, self).__init__()

    def apply(self, sample, context=None):
        assert 'gt_rbox' in sample
        assert sample['gt_rbox'].shape[1] == 5
        rrects = sample['gt_rbox']
        x_ctr = rrects[:, 0]
        y_ctr = rrects[:, 1]
        width = rrects[:, 2]
        height = rrects[:, 3]
        x1 = x_ctr - width / 2.0
        y1 = y_ctr - height / 2.0
        x2 = x_ctr + width / 2.0
        y2 = y_ctr + height / 2.0
        sample['gt_bbox'] = np.stack([x1, y1, x2, y2], axis=1)
        polys = bbox_utils.rbox2poly_np(rrects)
        sample['gt_poly'] = polys
        return sample