cspresnet.py 10.2 KB
Newer Older
S
shangliang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
24
from paddle.nn.initializer import Constant
S
shangliang Xu 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

from ppdet.modeling.ops import get_act_fn
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec

__all__ = ['CSPResNet', 'BasicBlock', 'EffectiveSELayer', 'ConvBNLayer']


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size=3,
                 stride=1,
                 groups=1,
                 padding=0,
                 act=None):
        super(ConvBNLayer, self).__init__()

        self.conv = nn.Conv2D(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)

        self.bn = nn.BatchNorm2D(
            ch_out,
            weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
        self.act = get_act_fn(act) if act is None or isinstance(act, (
            str, dict)) else act

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.act(x)

        return x


class RepVggBlock(nn.Layer):
69
    def __init__(self, ch_in, ch_out, act='relu', alpha=False):
S
shangliang Xu 已提交
70 71 72 73 74 75 76 77 78
        super(RepVggBlock, self).__init__()
        self.ch_in = ch_in
        self.ch_out = ch_out
        self.conv1 = ConvBNLayer(
            ch_in, ch_out, 3, stride=1, padding=1, act=None)
        self.conv2 = ConvBNLayer(
            ch_in, ch_out, 1, stride=1, padding=0, act=None)
        self.act = get_act_fn(act) if act is None or isinstance(act, (
            str, dict)) else act
79 80 81 82 83 84 85
        if alpha:
            self.alpha = self.create_parameter(
                shape=[1],
                attr=ParamAttr(initializer=Constant(value=1.)),
                dtype="float32")
        else:
            self.alpha = None
S
shangliang Xu 已提交
86 87 88 89 90

    def forward(self, x):
        if hasattr(self, 'conv'):
            y = self.conv(x)
        else:
91 92 93 94
            if self.alpha:
                y = self.conv1(x) + self.alpha * self.conv2(x)
            else:
                y = self.conv1(x) + self.conv2(x)
S
shangliang Xu 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        y = self.act(y)
        return y

    def convert_to_deploy(self):
        if not hasattr(self, 'conv'):
            self.conv = nn.Conv2D(
                in_channels=self.ch_in,
                out_channels=self.ch_out,
                kernel_size=3,
                stride=1,
                padding=1,
                groups=1)
        kernel, bias = self.get_equivalent_kernel_bias()
        self.conv.weight.set_value(kernel)
        self.conv.bias.set_value(bias)
110 111
        self.__delattr__('conv1')
        self.__delattr__('conv2')
S
shangliang Xu 已提交
112 113 114 115

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
116 117 118 119 120 121
        if self.alpha:
            return kernel3x3 + self.alpha * self._pad_1x1_to_3x3_tensor(
                kernel1x1), bias3x3 + self.alpha * bias1x1
        else:
            return kernel3x3 + self._pad_1x1_to_3x3_tensor(
                kernel1x1), bias3x3 + bias1x1
S
shangliang Xu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        kernel = branch.conv.weight
        running_mean = branch.bn._mean
        running_var = branch.bn._variance
        gamma = branch.bn.weight
        beta = branch.bn.bias
        eps = branch.bn._epsilon
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape((-1, 1, 1, 1))
        return kernel * t, beta - running_mean * gamma / std


class BasicBlock(nn.Layer):
144 145 146 147 148 149
    def __init__(self,
                 ch_in,
                 ch_out,
                 act='relu',
                 shortcut=True,
                 use_alpha=False):
S
shangliang Xu 已提交
150 151 152
        super(BasicBlock, self).__init__()
        assert ch_in == ch_out
        self.conv1 = ConvBNLayer(ch_in, ch_out, 3, stride=1, padding=1, act=act)
153
        self.conv2 = RepVggBlock(ch_out, ch_out, act=act, alpha=use_alpha)
S
shangliang Xu 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        self.shortcut = shortcut

    def forward(self, x):
        y = self.conv1(x)
        y = self.conv2(y)
        if self.shortcut:
            return paddle.add(x, y)
        else:
            return y


class EffectiveSELayer(nn.Layer):
    """ Effective Squeeze-Excitation
    From `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667
    """

    def __init__(self, channels, act='hardsigmoid'):
        super(EffectiveSELayer, self).__init__()
        self.fc = nn.Conv2D(channels, channels, kernel_size=1, padding=0)
        self.act = get_act_fn(act) if act is None or isinstance(act, (
            str, dict)) else act

    def forward(self, x):
        x_se = x.mean((2, 3), keepdim=True)
        x_se = self.fc(x_se)
        return x * self.act(x_se)


class CSPResStage(nn.Layer):
    def __init__(self,
                 block_fn,
                 ch_in,
                 ch_out,
                 n,
                 stride,
                 act='relu',
190 191
                 attn='eca',
                 use_alpha=False):
S
shangliang Xu 已提交
192 193 194 195 196 197 198 199 200 201
        super(CSPResStage, self).__init__()

        ch_mid = (ch_in + ch_out) // 2
        if stride == 2:
            self.conv_down = ConvBNLayer(
                ch_in, ch_mid, 3, stride=2, padding=1, act=act)
        else:
            self.conv_down = None
        self.conv1 = ConvBNLayer(ch_mid, ch_mid // 2, 1, act=act)
        self.conv2 = ConvBNLayer(ch_mid, ch_mid // 2, 1, act=act)
202
        self.blocks = nn.Sequential(*[
S
shangliang Xu 已提交
203
            block_fn(
204 205 206 207 208
                ch_mid // 2,
                ch_mid // 2,
                act=act,
                shortcut=True,
                use_alpha=use_alpha) for i in range(n)
S
shangliang Xu 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        ])
        if attn:
            self.attn = EffectiveSELayer(ch_mid, act='hardsigmoid')
        else:
            self.attn = None

        self.conv3 = ConvBNLayer(ch_mid, ch_out, 1, act=act)

    def forward(self, x):
        if self.conv_down is not None:
            x = self.conv_down(x)
        y1 = self.conv1(x)
        y2 = self.blocks(self.conv2(x))
        y = paddle.concat([y1, y2], axis=1)
        if self.attn is not None:
            y = self.attn(y)
        y = self.conv3(y)
        return y


@register
@serializable
class CSPResNet(nn.Layer):
    __shared__ = ['width_mult', 'depth_mult', 'trt']

    def __init__(self,
                 layers=[3, 6, 6, 3],
                 channels=[64, 128, 256, 512, 1024],
                 act='swish',
238
                 return_idx=[1, 2, 3],
S
shangliang Xu 已提交
239 240 241 242
                 depth_wise=False,
                 use_large_stem=False,
                 width_mult=1.0,
                 depth_mult=1.0,
243 244 245 246
                 trt=False,
                 use_checkpoint=False,
                 use_alpha=False,
                 **args):
S
shangliang Xu 已提交
247
        super(CSPResNet, self).__init__()
248
        self.use_checkpoint = use_checkpoint
S
shangliang Xu 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        channels = [max(round(c * width_mult), 1) for c in channels]
        layers = [max(round(l * depth_mult), 1) for l in layers]
        act = get_act_fn(
            act, trt=trt) if act is None or isinstance(act,
                                                       (str, dict)) else act

        if use_large_stem:
            self.stem = nn.Sequential(
                ('conv1', ConvBNLayer(
                    3, channels[0] // 2, 3, stride=2, padding=1, act=act)),
                ('conv2', ConvBNLayer(
                    channels[0] // 2,
                    channels[0] // 2,
                    3,
                    stride=1,
                    padding=1,
                    act=act)), ('conv3', ConvBNLayer(
                        channels[0] // 2,
                        channels[0],
                        3,
                        stride=1,
                        padding=1,
                        act=act)))
        else:
            self.stem = nn.Sequential(
                ('conv1', ConvBNLayer(
                    3, channels[0] // 2, 3, stride=2, padding=1, act=act)),
                ('conv2', ConvBNLayer(
                    channels[0] // 2,
                    channels[0],
                    3,
                    stride=1,
                    padding=1,
                    act=act)))

        n = len(channels) - 1
285
        self.stages = nn.Sequential(*[(str(i), CSPResStage(
286 287 288 289 290 291 292
            BasicBlock,
            channels[i],
            channels[i + 1],
            layers[i],
            2,
            act=act,
            use_alpha=use_alpha)) for i in range(n)])
S
shangliang Xu 已提交
293 294

        self._out_channels = channels[1:]
295
        self._out_strides = [4 * 2**i for i in range(n)]
S
shangliang Xu 已提交
296
        self.return_idx = return_idx
297 298
        if use_checkpoint:
            paddle.seed(0)
S
shangliang Xu 已提交
299 300 301 302 303 304

    def forward(self, inputs):
        x = inputs['image']
        x = self.stem(x)
        outs = []
        for idx, stage in enumerate(self.stages):
305 306 307 308 309
            if self.use_checkpoint and self.training:
                x = paddle.distributed.fleet.utils.recompute(
                    stage, x, **{"preserve_rng_state": True})
            else:
                x = stage(x)
S
shangliang Xu 已提交
310 311 312 313 314 315 316 317 318 319 320 321
            if idx in self.return_idx:
                outs.append(x)

        return outs

    @property
    def out_shape(self):
        return [
            ShapeSpec(
                channels=self._out_channels[i], stride=self._out_strides[i])
            for i in self.return_idx
        ]