psroi_pool_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/psroi_pool_op.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor), "
             "the input of PSROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
             "W is the width.");
    AddInput("ROIs",
             "(LoDTensor), "
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
    AddOutput("Out",
              "(Tensor), "
              "the output of PSROIPoolOp is a 4-D Tensor with shape "
              "(num_rois, output_channels, pooled_h, pooled_w).");
    AddAttr<int>(
        "output_channels",
        "(int), "
        "the number of channels of the output feature map. "
        "For a task of C classes of objects, output_channels should be "
        "(C + 1) for classification only.");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
**PSROIPool Operator**

Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
position-sensitive average pooling on regions of interest specified by input, takes as 
input N position-sensitive score maps and a list of num_rois regions of interest. 

PSROIPooling for R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.
    )Doc");
  }
};

class PSROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of PSROIPoolOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("ROIs"),
                   "Input(ROIs) of PSROIPoolOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of PSROIPoolOp should not be null.");
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

    PADDLE_ENFORCE(input_dims.size() == 4,
                   "The format of input tensor is NCHW");
    PADDLE_ENFORCE(rois_dims.size() == 2,
                   "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                   "given as [(x1, y1, x2, y2), ...]");
    PADDLE_ENFORCE(rois_dims[1] == 4,
                   "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                   "given as [(x1, y1, x2, y2), ...]");

    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    int output_channels = ctx->Attrs().Get<int>("output_channels");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

    PADDLE_ENFORCE(
        input_dims[1] == output_channels * pooled_height * pooled_width,
        "the channel of X(%d) should be equal to the product of "
        "output_channels(%d), pooled_height(%d) and pooled_width(%d)",
        input_dims[1], output_channels, pooled_height, pooled_width);

    PADDLE_ENFORCE_GT(pooled_height, 0,
                      "The pooled output height must be greater than 0");
    PADDLE_ENFORCE_GT(pooled_width, 0,
                      "The pooled output width must be greater than 0");
    PADDLE_ENFORCE_GT(output_channels, 1,
                      "The pooled output channels must greater than 1");
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
                      "The spatial scale must greater than 0.");

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
    out_dims[1] =
        output_channels;  // input_dims[1] / (pooled_height * pooled_width);
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
132 133
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
  }
};

class PSROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "The gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "The gradient of X should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
152 153
    return framework::OpKernelType(ctx.Input<framework::Tensor>("X")->type(),
                                   ctx.device_context());
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(psroi_pool, ops::PSROIPoolOp, ops::PSROIPoolOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(psroi_pool_grad, ops::PSROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(
    psroi_pool,
    ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    psroi_pool_grad,
    ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>);