infer.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import glob

import numpy as np
from PIL import Image

from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.modeling.model_input import create_feed
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches
from ppdet.utils.cli import ArgsParser
33
from ppdet.utils.check import check_gpu
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
from ppdet.utils.visualizer import visualize_results
import ppdet.utils.checkpoint as checkpoint

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def get_save_image_name(output_dir, image_path):
    """
    Get save image name from source image path.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    image_name = image_path.split('/')[-1]
    name, ext = os.path.splitext(image_name)
    return os.path.join(output_dir, "{}".format(name)) + ext


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
    images = []

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        images.append(infer_img)
        return images

    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.extend(glob.glob('{}/*.{}'.format(infer_dir, ext)))

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    logger.info("Found {} inference images in total.".format(len(images)))

    return images


85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
def prune_feed_vars(feeded_var_names, target_vars, prog):
    """
    Filter out feed variables which are not in program,
    pruned feed variables are only used in post processing
    on model output, which are not used in program, such
    as im_id to identify image order, im_shape to clip bbox
    in image.
    """
    exist_var_names = []
    prog = prog.clone()
    prog = prog._prune(targets=target_vars)
    global_block = prog.global_block()
    for name in feeded_var_names:
        try:
            v = global_block.var(name)
            exist_var_names.append(v.name)
        except Exception:
            logger.info('save_inference_model pruned unused feed '
                        'variables {}'.format(name))
            pass
    return exist_var_names


108 109 110 111
def save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(FLAGS.output_dir, cfg_name)
    feeded_var_names = [var.name for var in feed_vars.values()]
W
wangguanzhong 已提交
112 113 114
    target_vars = list(test_fetches.values())
    feeded_var_names = prune_feed_vars(feeded_var_names, target_vars,
                                       infer_prog)
115 116
    logger.info("Save inference model to {}, input: {}, output: "
                "{}...".format(save_dir, feeded_var_names,
W
wangguanzhong 已提交
117 118 119 120 121 122 123 124
                               [var.name for var in target_vars]))
    fluid.io.save_inference_model(
        save_dir,
        feeded_var_names=feeded_var_names,
        target_vars=target_vars,
        executor=exe,
        main_program=infer_prog,
        params_filename="__params__")
125 126


127 128 129 130 131 132 133 134 135 136
def main():
    cfg = load_config(FLAGS.config)

    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

137 138 139
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    if 'test_feed' not in cfg:
        test_feed = create(main_arch + 'TestFeed')
    else:
        test_feed = create(cfg.test_feed)

    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
    test_feed.dataset.add_images(test_images)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
            _, feed_vars = create_feed(test_feed, use_pyreader=False)
            test_fetches = model.test(feed_vars)
    infer_prog = infer_prog.clone(True)

    reader = create_reader(test_feed)
    feeder = fluid.DataFeeder(place=place, feed_list=feed_vars.values())

    exe.run(startup_prog)
    if cfg.weights:
        checkpoint.load_checkpoint(exe, infer_prog, cfg.weights)

168 169 170
    if FLAGS.save_inference_model:
        save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)

171
    # parse infer fetches
172 173
    assert cfg.metric in ['COCO', 'VOC'], \
            "unknown metric type {}".format(cfg.metric)
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    extra_keys = []
    if cfg['metric'] == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg['metric'] == 'VOC':
        extra_keys = ['im_id']
    keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)

    # parse dataset category
    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
    if cfg.metric == "VOC":
        from ppdet.utils.voc_eval import bbox2out, get_category_info

    anno_file = getattr(test_feed.dataset, 'annotation', None)
    with_background = getattr(test_feed, 'with_background', True)
    use_default_label = getattr(test_feed, 'use_default_label', False)
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

193 194 195 196 197 198
    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    imid2path = reader.imid2path
    for iter_id, data in enumerate(reader()):
        outs = exe.run(infer_prog,
                       feed=feeder.feed(data),
                       fetch_list=values,
                       return_numpy=False)
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(keys, outs)
        }
        logger.info('Infer iter {}'.format(iter_id))

        bbox_results = None
        mask_results = None
        if 'bbox' in res:
            bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
        if 'mask' in res:
            mask_results = mask2out([res], clsid2catid,
                                    model.mask_head.resolution)

        # visualize result
        im_ids = res['im_id'][0]
        for im_id in im_ids:
            image_path = imid2path[int(im_id)]
            image = Image.open(image_path).convert('RGB')
            image = visualize_results(image,
J
jerrywgz 已提交
225 226
                                      int(im_id), catid2name,
                                      FLAGS.draw_threshold, bbox_results,
227 228 229
                                      mask_results, is_bbox_normalized)
            save_name = get_save_image_name(FLAGS.output_dir, image_path)
            logger.info("Detection bbox results save in {}".format(save_name))
J
jerrywgz 已提交
230
            image.save(save_name, quality=95)
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--infer_dir",
        type=str,
        default=None,
        help="Directory for images to perform inference on.")
    parser.add_argument(
        "--infer_img",
        type=str,
        default=None,
        help="Image path, has higher priority over --infer_dir")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output visualization files.")
J
jerrywgz 已提交
250 251 252 253 254
    parser.add_argument(
        "--draw_threshold",
        type=float,
        default=0.5,
        help="Threshold to reserve the result for visualization.")
255 256 257 258 259
    parser.add_argument(
        "--save_inference_model",
        action='store_true',
        default=False,
        help="Save inference model in output_dir if True.")
260 261
    FLAGS = parser.parse_args()
    main()