yolo_head.py 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from ppdet.modeling.ops import MultiClassNMS
from ppdet.core.workspace import register

__all__ = ['YOLOv3Head']


@register
class YOLOv3Head(object):
    """
    Head block for YOLOv3 network

    Args:
        norm_decay (float): weight decay for normalization layer weights
        num_classes (int): number of output classes
        ignore_thresh (float): threshold to ignore confidence loss
        label_smooth (bool): whether to use label smoothing
        anchors (list): anchors
        anchor_masks (list): anchor masks
        nms (object): an instance of `MultiClassNMS`
    """
    __inject__ = ['nms']
44
    __shared__ = ['num_classes']
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

    def __init__(self,
                 norm_decay=0.,
                 num_classes=80,
                 ignore_thresh=0.7,
                 label_smooth=True,
                 anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
                          [59, 119], [116, 90], [156, 198], [373, 326]],
                 anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]],
                 nms=MultiClassNMS(
                     score_threshold=0.01,
                     nms_top_k=1000,
                     keep_top_k=100,
                     nms_threshold=0.45,
                     background_label=-1).__dict__):
        self.norm_decay = norm_decay
        self.num_classes = num_classes
        self.ignore_thresh = ignore_thresh
        self.label_smooth = label_smooth
        self.anchor_masks = anchor_masks
        self._parse_anchors(anchors)
        self.nms = nms
        if isinstance(nms, dict):
            self.nms = MultiClassNMS(**nms)

    def _conv_bn(self,
                 input,
                 ch_out,
                 filter_size,
                 stride,
                 padding,
                 act='leaky',
                 is_test=True,
                 name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            act=None,
            param_attr=ParamAttr(name=name + ".conv.weights"),
            bias_attr=False)

        bn_name = name + ".bn"
        bn_param_attr = ParamAttr(
            regularizer=L2Decay(self.norm_decay), name=bn_name + '.scale')
        bn_bias_attr = ParamAttr(
            regularizer=L2Decay(self.norm_decay), name=bn_name + '.offset')
        out = fluid.layers.batch_norm(
            input=conv,
            act=None,
            is_test=is_test,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '.mean',
            moving_variance_name=bn_name + '.var')

        if act == 'leaky':
            out = fluid.layers.leaky_relu(x=out, alpha=0.1)
        return out

    def _detection_block(self, input, channel, is_test=True, name=None):
        assert channel % 2 == 0, \
            "channel {} cannot be divided by 2 in detection block {}" \
            .format(channel, name)

        conv = input
        for j in range(2):
            conv = self._conv_bn(
                conv,
                channel,
                filter_size=1,
                stride=1,
                padding=0,
                is_test=is_test,
                name='{}.{}.0'.format(name, j))
            conv = self._conv_bn(
                conv,
                channel * 2,
                filter_size=3,
                stride=1,
                padding=1,
                is_test=is_test,
                name='{}.{}.1'.format(name, j))
        route = self._conv_bn(
            conv,
            channel,
            filter_size=1,
            stride=1,
            padding=0,
            is_test=is_test,
            name='{}.2'.format(name))
        tip = self._conv_bn(
            route,
            channel * 2,
            filter_size=3,
            stride=1,
            padding=1,
            is_test=is_test,
            name='{}.tip'.format(name))
        return route, tip

    def _upsample(self, input, scale=2, name=None):
        # get dynamic upsample output shape
        shape_nchw = fluid.layers.shape(input)
        shape_hw = fluid.layers.slice(
            shape_nchw, axes=[0], starts=[2], ends=[4])
        shape_hw.stop_gradient = True
        in_shape = fluid.layers.cast(shape_hw, dtype='int32')
        out_shape = in_shape * scale
        out_shape.stop_gradient = True

        # reisze by actual_shape
        out = fluid.layers.resize_nearest(
            input=input, scale=scale, actual_shape=out_shape, name=name)
        return out

    def _parse_anchors(self, anchors):
        """
        Check ANCHORS/ANCHOR_MASKS in config and parse mask_anchors

        """
        self.anchors = []
        self.mask_anchors = []

        assert len(anchors) > 0, "ANCHORS not set."
        assert len(self.anchor_masks) > 0, "ANCHOR_MASKS not set."

        for anchor in anchors:
            assert len(anchor) == 2, "anchor {} len should be 2".format(anchor)
            self.anchors.extend(anchor)

        anchor_num = len(anchors)
        for masks in self.anchor_masks:
            self.mask_anchors.append([])
            for mask in masks:
                assert mask < anchor_num, "anchor mask index overflow"
                self.mask_anchors[-1].extend(anchors[mask])

    def _get_outputs(self, input, is_train=True):
        """
        Get YOLOv3 head output

        Args:
            input (list): List of Variables, output of backbone stages
            is_train (bool): whether in train or test mode

        Returns:
            outputs (list): Variables of each output layer
        """

        outputs = []

        # get last out_layer_num blocks in reverse order
        out_layer_num = len(self.anchor_masks)
        blocks = input[-1:-out_layer_num - 1:-1]

        route = None
        for i, block in enumerate(blocks):
            if i > 0:  # perform concat in first 2 detection_block
                block = fluid.layers.concat(input=[route, block], axis=1)
            route, tip = self._detection_block(
                block,
                channel=512 // (2**i),
                is_test=(not is_train),
                name="yolo_block.{}".format(i))

            # out channel number = mask_num * (5 + class_num)
            num_filters = len(self.anchor_masks[i]) * (self.num_classes + 5)
            block_out = fluid.layers.conv2d(
                input=tip,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                padding=0,
                act=None,
                param_attr=ParamAttr(
                    name="yolo_output.{}.conv.weights".format(i)),
                bias_attr=ParamAttr(
                    regularizer=L2Decay(0.),
                    name="yolo_output.{}.conv.bias".format(i)))
            outputs.append(block_out)

            if i < len(blocks) - 1:
                # do not perform upsample in the last detection_block
                route = self._conv_bn(
                    input=route,
                    ch_out=256 // (2**i),
                    filter_size=1,
                    stride=1,
                    padding=0,
                    is_test=(not is_train),
                    name="yolo_transition.{}".format(i))
                # upsample
                route = self._upsample(route)

        return outputs

    def get_loss(self, input, gt_box, gt_label, gt_score):
        """
        Get final loss of network of YOLOv3.

        Args:
            input (list): List of Variables, output of backbone stages
            gt_box (Variable): The ground-truth boudding boxes.
            gt_label (Variable): The ground-truth class labels.
            gt_score (Variable): The ground-truth boudding boxes mixup scores.

        Returns:
            loss (Variable): The loss Variable of YOLOv3 network.

        """
        outputs = self._get_outputs(input, is_train=True)

        losses = []
        downsample = 32
        for i, output in enumerate(outputs):
            anchor_mask = self.anchor_masks[i]
            loss = fluid.layers.yolov3_loss(
                x=output,
                gt_box=gt_box,
                gt_label=gt_label,
                gt_score=gt_score,
                anchors=self.anchors,
                anchor_mask=anchor_mask,
                class_num=self.num_classes,
                ignore_thresh=self.ignore_thresh,
                downsample_ratio=downsample,
                use_label_smooth=self.label_smooth,
                name="yolo_loss" + str(i))
            losses.append(fluid.layers.reduce_mean(loss))
            downsample //= 2

        return sum(losses)

281
    def get_prediction(self, input, im_size):
282 283 284 285 286
        """
        Get prediction result of YOLOv3 network

        Args:
            input (list): List of Variables, output of backbone stages
287
            im_size (Variable): Variable of size([h, w]) of each image
288 289 290 291 292 293 294 295 296 297 298 299 300 301

        Returns:
            pred (Variable): The prediction result after non-max suppress.

        """

        outputs = self._get_outputs(input, is_train=False)

        boxes = []
        scores = []
        downsample = 32
        for i, output in enumerate(outputs):
            box, score = fluid.layers.yolo_box(
                x=output,
302
                img_size=im_size,
303 304 305 306 307 308 309 310 311 312 313 314 315 316
                anchors=self.mask_anchors[i],
                class_num=self.num_classes,
                conf_thresh=self.nms.score_threshold,
                downsample_ratio=downsample,
                name="yolo_box" + str(i))
            boxes.append(box)
            scores.append(fluid.layers.transpose(score, perm=[0, 2, 1]))

            downsample //= 2

        yolo_boxes = fluid.layers.concat(boxes, axis=1)
        yolo_scores = fluid.layers.concat(scores, axis=2)
        pred = self.nms(bboxes=yolo_boxes, scores=yolo_scores)
        return {'bbox': pred}