googlenet.py 6.7 KB
Newer Older
D
dangqingqing 已提交
1 2 3
#!/usr/bin/env python
from paddle.trainer_config_helpers import *

4 5
height = 224
width = 224
D
dangqingqing 已提交
6
num_class = 1000
7
batch_size = get_config_arg('batch_size', int, 128)
8
use_gpu = get_config_arg('use_gpu', bool, True)
T
tensor-tang 已提交
9 10 11 12 13 14 15 16 17
is_infer = get_config_arg("is_infer", bool, False)

args = {
    'height': height,
    'width': width,
    'color': True,
    'num_class': num_class,
    'is_infer': is_infer
}
18
define_py_data_sources2(
19 20 21 22 23
    "train.list" if not is_infer else None,
    "test.list" if is_infer else None,
    module="provider",
    obj="process",
    args=args)
D
dangqingqing 已提交
24 25

settings(
26 27 28 29
    batch_size=batch_size,
    learning_rate=0.01 / batch_size,
    learning_method=MomentumOptimizer(0.9),
    regularization=L2Regularization(0.0005 * batch_size))
D
dangqingqing 已提交
30

31 32
conv_projection = conv_projection if use_gpu else img_conv_layer

D
dangqingqing 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46
def inception2(name, input, channels, \
    filter1,
    filter3R, filter3,
    filter5R, filter5,
    proj):

    conv1 = name + '_1'
    conv3r = name + '_3r'
    conv3 = name + '_3'
    conv5r = name + '_5r'
    conv5 = name + '_5'
    maxpool = name + '_max'
    convproj = name + '_proj'

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    cov1 = img_conv_layer(
        name=conv1,
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter1,
        stride=1,
        padding=0)

    cov3r = img_conv_layer(
        name=conv3r,
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter3R,
        stride=1,
        padding=0)
    cov3 = img_conv_layer(
        name=conv3,
        input=cov3r,
        filter_size=3,
        num_filters=filter3,
        stride=1,
        padding=1)

    cov5r = img_conv_layer(
        name=conv5r,
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter5R,
        stride=1,
        padding=0)
    cov5 = img_conv_layer(
        name=conv5,
        input=cov5r,
        filter_size=5,
        num_filters=filter5,
        stride=1,
        padding=2)

    pool1 = img_pool_layer(
        name=maxpool,
        input=input,
        pool_size=3,
        num_channels=channels,
        stride=1,
        padding=1)
    covprj = img_conv_layer(
        name=convproj,
        input=pool1,
        filter_size=1,
        num_filters=proj,
        stride=1,
        padding=0)
D
dangqingqing 已提交
102 103 104 105 106 107 108 109 110 111

    cat = concat_layer(name=name, input=[cov1, cov3, cov5, covprj])
    return cat

def inception(name, input, channels, \
    filter1,
    filter3R, filter3,
    filter5R, filter5,
    proj):

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    cov1 = conv_projection(
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter1,
        stride=1,
        padding=0)

    cov3r = img_conv_layer(
        name=name + '_3r',
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter3R,
        stride=1,
        padding=0)
    cov3 = conv_projection(
        input=cov3r, filter_size=3, num_filters=filter3, stride=1, padding=1)

    cov5r = img_conv_layer(
        name=name + '_5r',
        input=input,
        filter_size=1,
        num_channels=channels,
        num_filters=filter5R,
        stride=1,
        padding=0)
    cov5 = conv_projection(
        input=cov5r, filter_size=5, num_filters=filter5, stride=1, padding=2)

    pool1 = img_pool_layer(
        name=name + '_max',
        input=input,
        pool_size=3,
        num_channels=channels,
        stride=1,
        padding=1)
    covprj = conv_projection(
        input=pool1, filter_size=1, num_filters=proj, stride=1, padding=0)

    cat = concat_layer(
        name=name,
        input=[cov1, cov3, cov5, covprj],
155
        bias_attr=True if use_gpu else False,
156
        act=ReluActivation())
D
dangqingqing 已提交
157 158 159 160 161 162
    return cat


data = data_layer(name="input", size=3 * height * width)

# stage 1
163 164 165 166 167 168 169 170 171 172
conv1 = img_conv_layer(
    name="conv1",
    input=data,
    filter_size=7,
    num_channels=3,
    num_filters=64,
    stride=2,
    padding=3)
pool1 = img_pool_layer(
    name="pool1", input=conv1, pool_size=3, num_channels=64, stride=2)
D
dangqingqing 已提交
173 174

# stage 2
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
conv2_1 = img_conv_layer(
    name="conv2_1",
    input=pool1,
    filter_size=1,
    num_filters=64,
    stride=1,
    padding=0)
conv2_2 = img_conv_layer(
    name="conv2_2",
    input=conv2_1,
    filter_size=3,
    num_filters=192,
    stride=1,
    padding=1)
pool2 = img_pool_layer(
    name="pool2", input=conv2_2, pool_size=3, num_channels=192, stride=2)
D
dangqingqing 已提交
191 192

# stage 3
193 194 195 196
ince3a = inception("ince3a", pool2, 192, 64, 96, 128, 16, 32, 32)
ince3b = inception("ince3b", ince3a, 256, 128, 128, 192, 32, 96, 64)
pool3 = img_pool_layer(
    name="pool3", input=ince3b, num_channels=480, pool_size=3, stride=2)
D
dangqingqing 已提交
197 198

# stage 4
199 200
ince4a = inception("ince4a", pool3, 480, 192, 96, 208, 16, 48, 64)
ince4b = inception("ince4b", ince4a, 512, 160, 112, 224, 24, 64, 64)
D
dangqingqing 已提交
201
ince4c = inception("ince4c", ince4b, 512, 128, 128, 256, 24, 64, 64)
202 203 204 205
ince4d = inception("ince4d", ince4c, 512, 112, 144, 288, 32, 64, 64)
ince4e = inception("ince4e", ince4d, 528, 256, 160, 320, 32, 128, 128)
pool4 = img_pool_layer(
    name="pool4", input=ince4e, num_channels=832, pool_size=3, stride=2)
D
dangqingqing 已提交
206 207

# stage 5
208
ince5a = inception("ince5a", pool4, 832, 256, 160, 320, 32, 128, 128)
D
dangqingqing 已提交
209
ince5b = inception("ince5b", ince5a, 832, 384, 192, 384, 48, 128, 128)
210 211 212 213 214 215 216
pool5 = img_pool_layer(
    name="pool5",
    input=ince5b,
    num_channels=1024,
    pool_size=7,
    stride=7,
    pool_type=AvgPooling())
D
dangqingqing 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

# We remove loss1 and loss2 for all system when testing benchmark
# output 1
# pool_o1 = img_pool_layer(name="pool_o1", input=ince4a, num_channels=512, pool_size=5, stride=3, pool_type=AvgPooling())
# conv_o1 = img_conv_layer(name="conv_o1", input=pool_o1, filter_size=1, num_filters=128, stride=1, padding=0)
# fc_o1 = fc_layer(name="fc_o1", input=conv_o1, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
# out1 = fc_layer(name="output1", input=fc_o1,  size=1000, act=SoftmaxActivation())
# loss1 = cross_entropy(name='loss1', input=out1, label=lab, coeff=0.3) 

# output 2
#pool_o2 = img_pool_layer(name="pool_o2", input=ince4d, num_channels=528, pool_size=5, stride=3, pool_type=AvgPooling())
#conv_o2 = img_conv_layer(name="conv_o2", input=pool_o2, filter_size=1, num_filters=128, stride=1, padding=0)
#fc_o2 = fc_layer(name="fc_o2", input=conv_o2, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
#out2 = fc_layer(name="output2", input=fc_o2, size=1000, act=SoftmaxActivation())
#loss2 = cross_entropy(name='loss2', input=out2, label=lab, coeff=0.3) 

# output 3
dropout = dropout_layer(name="dropout", input=pool5, dropout_rate=0.4)
235 236
out3 = fc_layer(
    name="output3", input=dropout, size=1000, act=SoftmaxActivation())
D
dangqingqing 已提交
237

T
tensor-tang 已提交
238 239 240 241 242 243
if is_infer:
    outputs(out3)
else:
    lab = data_layer(name="label", size=num_class)
    loss3 = cross_entropy(name='loss3', input=out3, label=lab)
    outputs(loss3)