pybind.cc 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Y
Yu Yang 已提交
19 20 21 22 23 24 25 26 27
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

28 29 30
namespace py = pybind11;
namespace pd = paddle::framework;

Y
Yu Yang 已提交
31
USE_OP(add_two);
Q
Qiao Longfei 已提交
32
USE_OP(onehot_cross_entropy);
Y
Yu Yang 已提交
33
USE_OP_WITHOUT_KERNEL(fc);
Q
Qiao Longfei 已提交
34
USE_OP(sgd);
Q
qijun 已提交
35 36 37 38
USE_OP(mul);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
Y
Yan Chunwei 已提交
39
USE_OP_WITHOUT_KERNEL(recurrent_op);
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41 42 43 44 45 46 47 48 49 50
template <typename ClassType>
void ExposeOperator(ClassType& m) {
  m.def("infer_shape", &ClassType::type::InferShape)
      .def("run", &ClassType::type::Run)
      .def("outputs",
           [](const typename ClassType::type& op) -> std::vector<std::string> {
             return op.outputs_;
           })
      .def("__str__", &ClassType::type::DebugString);
}
Y
Yu Yang 已提交
51

52 53 54 55 56
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

57
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
58
  py::module m("core", "C++ core of PaddlePaddle");
59

Y
Yu Yang 已提交
60 61
  py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer([](pd::Tensor& self) -> py::buffer_info {
62
        return paddle::pybind::CastToPyBuffer(self);
Y
Yu Yang 已提交
63 64 65 66 67
      })
      .def("get_dims",
           [](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_dims",
           [](pd::Tensor& self, const std::vector<int>& dim) {
F
fengjiayi 已提交
68
             self.Resize(pd::make_ddim(dim));
Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77
           })
      .def("alloc_float",
           [](pd::Tensor& self) {
             self.mutable_data<float>(paddle::platform::CPUPlace());
           })
      .def("alloc_int",
           [](pd::Tensor& self) {
             self.mutable_data<int>(paddle::platform::CPUPlace());
           })
78
      .def("set", paddle::pybind::PyTensorSetFromArray<float>)
Y
Yu Yang 已提交
79 80 81
      .def("set", paddle::pybind::PyTensorSetFromArray<int>)
      .def("shape",
           [](pd::Tensor& self) { return pd::vectorize(self.dims()); });
Y
Yu Yang 已提交
82

83 84 85 86 87 88 89 90 91 92
  py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.

All parameter, weight, gradient are variables in Paddle.
)DOC")
      .def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
      .def("set_int",
           [](pd::Variable& var, int val) -> void {
             *var.GetMutable<int>() = val;
           })
      .def("get_int",
Y
Yu Yang 已提交
93 94 95 96 97
           [](const pd::Variable& var) -> int { return var.Get<int>(); })
      .def("get_tensor",
           [](pd::Variable& self) -> pd::Tensor* {
             return self.GetMutable<pd::Tensor>();
           },
Y
Yan Chunwei 已提交
98 99 100 101 102
           py::return_value_policy::reference)
      .def("get_net",
           [](pd::Variable& self) -> pd::NetOp* {
             return self.GetMutable<pd::NetOp>();
           },
Y
Yu Yang 已提交
103
           py::return_value_policy::reference);
104 105 106 107 108 109 110 111

  py::class_<pd::Scope, std::shared_ptr<pd::Scope>>(m, "Scope")
      .def(py::init<const std::shared_ptr<pd::Scope>&>())
      .def("get_var",
           &pd::Scope::GetVariable,
           py::return_value_policy::reference)
      .def("create_var",
           &pd::Scope::CreateVariable,
112 113
           py::return_value_policy::reference)
      .def("get_var_name", &pd::Scope::GetVariableName);
114

Y
Yu Yang 已提交
115 116
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
117
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
Y
Yu Yang 已提交
118
    auto& protos = pd::OpRegistry::protos();
Y
Yu Yang 已提交
119
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
120
    for (auto it = protos.begin(); it != protos.end(); ++it) {
Y
Yu Yang 已提交
121 122
      PADDLE_ENFORCE(it->second.IsInitialized(),
                     "OpProto must all be initialized");
Y
Yu Yang 已提交
123 124
      std::string str;
      PADDLE_ENFORCE(it->second.SerializeToString(&str),
Y
Yu Yang 已提交
125
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
126
      ret_values.push_back(py::bytes(str));
Y
Yu Yang 已提交
127 128 129
    }
    return ret_values;
  });
130 131 132 133 134 135
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
      .def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
      .def("temp", pd::OperatorBase::TMP_VAR_NAME);

Y
Yu Yang 已提交
136 137 138 139 140
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
      .def_static("cpu_context", []() -> paddle::platform::DeviceContext* {
        return new paddle::platform::CPUDeviceContext();
      });

Y
Yu Yang 已提交
141 142
  py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base(
      m, "Operator");
Y
Yu Yang 已提交
143

Y
Yu Yang 已提交
144
  operator_base.def_static("create", [](py::bytes protobin) {
Y
Yu Yang 已提交
145 146 147 148 149 150 151 152 153 154
    pd::OpDesc desc;
    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                   "Cannot parse user input to OpDesc");
    PADDLE_ENFORCE(desc.IsInitialized(),
                   "User OpDesc is not initialized, reason %s",
                   desc.InitializationErrorString());
    return pd::OpRegistry::CreateOp(desc);
  });
  ExposeOperator(operator_base);

Y
Yu Yang 已提交
155
  py::class_<pd::NetOp, std::shared_ptr<pd::NetOp>> net(m, "Net");
Y
Yu Yang 已提交
156 157

  net.def_static("create",
Y
Yu Yang 已提交
158 159
                 []() -> std::shared_ptr<pd::NetOp> {
                   auto retv = std::make_shared<pd::NetOp>();
Y
Yu Yang 已提交
160
                   retv->type_ = "plain_net";
Y
Yu Yang 已提交
161 162
                   return retv;
                 })
Y
Yu Yang 已提交
163
      .def("add_op", &pd::NetOp::AddOp)
Y
Yu Yang 已提交
164
      .def("add_op",
Y
Yu Yang 已提交
165 166
           [](pd::NetOp& self, const std::shared_ptr<pd::NetOp>& net) -> void {
             self.AddOp(std::static_pointer_cast<pd::OperatorBase>(net));
Y
Yu Yang 已提交
167
           })
Y
Yu Yang 已提交
168 169 170
      .def("complete_add_op", &pd::NetOp::CompleteAddOp)
      .def("complete_add_op",
           [](std::shared_ptr<pd::NetOp>& self) { self->CompleteAddOp(); });
Y
Yu Yang 已提交
171
  ExposeOperator(net);
Y
Yu Yang 已提交
172

173 174
  m.def("unique_integer", UniqueIntegerGenerator);

175
  return m.ptr();
L
Luo Tao 已提交
176
}