BufferArg.h 8.3 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>

#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"

namespace paddle {

enum BufferType {
  TENSOR_NORMAL = 0,
  TENSOR_SEQUENCE_ID = 1,
  TENSOR_SEQUENCE_DATA = 2,
  TENSOR_SPARSE = 3
};

enum SparseDataType {
  SPARSE_NO_VALUE = 0,  // do not need value pointer, all values are 1
  SPARSE_FLOAT_VALUE = 1
};

enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 };

class BufferArg;
class SequenceArg;
class SparseMatrixArg;
typedef std::shared_ptr<BufferArg> BufferArgPtr;

46 47 48 49 50 51 52 53 54 55 56 57 58 59
/**
 * \brief BufferArg used as the argument type of Function.
 *
 * The arguments of the Paddle Function have four Buffer types.
 * 1. BufferArg for a dense Buffer of any dimension.
 * 2. SequenceIdArg for a Buffer of sequence start positions.
 * 3. SequenceArg for a Buffer of sequence data.
 * 4. SparseMatrixArg for a Buffer of sparse matrix.
 *
 * There is an ArgType property for the BufferArg used as Function Output.
 * Whether the result of the Function calculation is assigned to the
 * output Buffer or added to the output Buffer is determined by the
 * argType_ property of the output BufferArg.
 */
60 61 62 63 64 65 66 67 68

// ArgType is only used by output BufferArg.
// For input argument, argType_ is ignored.
// For output argument, need to set the argType_ of the BufferArg.
enum ArgType {
  UNSPECIFIED = 0,
  ASSIGN_TO = 1,
  ADD_TO = 2,
};
H
hedaoyuan 已提交
69
class BufferArg {
70 71 72 73 74
public:
  void setArgType(ArgType argType) { argType_ = argType; }

  ArgType getArgType() const { return argType_; }

H
hedaoyuan 已提交
75
public:
76 77 78 79 80
  BufferArg(void* buf,
            ValueType valueType,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
      : buf_(buf), valueType_(valueType), shape_(shape), argType_(argType) {}
H
hedaoyuan 已提交
81 82 83 84

  BufferArg(void* buf, ValueType valueType)
      : buf_(buf), valueType_(valueType) {}

85
  BufferArg(const Matrix& matrix, ArgType argType = UNSPECIFIED)
86 87
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
88
        valueType_(DataType<real>::value),
89 90
        shape_(2),
        argType_(argType) {
H
hedaoyuan 已提交
91 92 93 94
    shape_.setDim(0, matrix.getHeight());
    shape_.setDim(1, matrix.getWidth());
  }

95 96 97
  BufferArg(const Matrix& matrix,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
98 99
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
100
        valueType_(DataType<real>::value),
101 102
        shape_(shape),
        argType_(argType) {
H
hedaoyuan 已提交
103 104 105
    CHECK_EQ(matrix.getElementCnt(), shape.getElements());
  }

106
  BufferArg(const Vector& vector, ArgType argType = UNSPECIFIED)
107 108
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
109
        valueType_(DataType<real>::value),
110 111
        shape_(1),
        argType_(argType) {
H
hedaoyuan 已提交
112 113 114
    shape_.setDim(0, vector.getSize());
  }

115
  BufferArg(const IVector& vector, ArgType argType = UNSPECIFIED)
116 117
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
118
        valueType_(VALUE_TYPE_INT32),
119 120
        shape_(1),
        argType_(argType) {
H
hedaoyuan 已提交
121 122 123 124 125 126 127 128
    shape_.setDim(0, vector.getSize());
  }

  template <DeviceType DType>
  typename Tensor<real, DType>::Matrix matrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
129
    CHECK_EQ((size_t)2, shape_.ndims());
H
hedaoyuan 已提交
130 131 132 133 134 135 136 137 138
    return typename Tensor<real, DType>::Matrix(
        reinterpret_cast<real*>(buf_), shape_[0], shape_[1]);
  }

  template <typename VType, DeviceType DType>
  typename Tensor<VType, DType>::Vector vector() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<VType>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
139
    CHECK_EQ((size_t)1, shape_.ndims());
H
hedaoyuan 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return typename Tensor<VType, DType>::Vector(
        shape_[0], reinterpret_cast<VType*>(buf_));
  }

  virtual ~BufferArg() {}

  template <typename T>
  T* data() const {
    return reinterpret_cast<T*>(buf_);
  }

  void* data() const { return buf_; }
  ValueType valueType() const { return valueType_; }
  BufferType bufferType() const { return bufferType_; }
  const TensorShape& shape() const { return shape_; }

  const SequenceArg& sequence() const;
  const SparseMatrixArg& sparse() const;

protected:
  void* buf_;
  ValueType valueType_;
  TensorShape shape_;
  BufferType bufferType_;
164
  ArgType argType_ = UNSPECIFIED;
H
hedaoyuan 已提交
165 166 167 168 169 170 171
  // leading dimensions. The size is dims_.size()
  // Dims lds_;
};

// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
H
hedaoyuan 已提交
172
// if a < b then value_.buf_[a] < value_.buf_[b]
H
hedaoyuan 已提交
173 174
class SequenceIdArg : public BufferArg {
public:
175 176 177 178
  SequenceIdArg(void* buf,
                const TensorShape& shape,
                ArgType argType = UNSPECIFIED)
      : BufferArg(buf, VALUE_TYPE_INT32, shape, argType) {
H
hedaoyuan 已提交
179
    CHECK_EQ(shape_.ndims(), (size_t)1);
H
hedaoyuan 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    numSeqs_ = shape_[0] - 1;
  }

  SequenceIdArg(const IVector& vector) : BufferArg(vector) {
    numSeqs_ = shape_[0] - 1;
  }

  ~SequenceIdArg() {}

  size_t numSeqs() const { return numSeqs_; }

private:
  size_t numSeqs_;
};

// sequence data
class SequenceArg : public BufferArg {
public:
  SequenceArg(void* buf,
              ValueType valueType,
              const TensorShape& shape,
201 202 203 204
              const SequenceIdArg& startPositions,
              ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
        startPositions_(startPositions) {}
H
hedaoyuan 已提交
205

206 207 208 209
  SequenceArg(const Matrix& matrix,
              const IVector& vector,
              ArgType argType = UNSPECIFIED)
      : BufferArg(matrix, argType), startPositions_(vector) {}
H
hedaoyuan 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

  ~SequenceArg() {}

  void* getIdBuf() const { return startPositions_.data(); }
  size_t numSeqs() const { return startPositions_.numSeqs(); }

private:
  SequenceIdArg startPositions_;
};

// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
  SparseMatrixArg(void* buf,
                  ValueType valueType,
                  const TensorShape& shape,
                  const BufferArg& row,
                  const BufferArg& col,
                  size_t nnz,
                  SparseDataFormat format,
232 233 234
                  SparseDataType type,
                  ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
H
hedaoyuan 已提交
235 236 237 238 239 240
        row_(row),
        col_(col),
        nnz_(nnz),
        format_(format),
        type_(type) {
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
H
hedaoyuan 已提交
241 242 243
    CHECK_EQ(shape_.ndims(), (size_t)2);
    CHECK_EQ(row_.shape().ndims(), (size_t)1);
    CHECK_EQ(col_.shape().ndims(), (size_t)1);
H
hedaoyuan 已提交
244 245 246 247 248 249 250
    if (format == SPARSE_CSR_FORMAT) {
      CHECK_EQ(nnz, col.shape()[0]);
    } else if (format == SPARSE_CSC_FORMAT) {
      CHECK_EQ(nnz, row.shape()[0]);
    }
  }

251 252
  SparseMatrixArg(const CpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED)
      : BufferArg(sparse, argType),
H
hedaoyuan 已提交
253 254
        row_(reinterpret_cast<void*>(sparse.getRows()), VALUE_TYPE_INT32),
        col_(reinterpret_cast<void*>(sparse.getCols()), VALUE_TYPE_INT32) {}
H
hedaoyuan 已提交
255

256 257
  SparseMatrixArg(const GpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED)
      : BufferArg(sparse, argType),
H
hedaoyuan 已提交
258 259
        row_(reinterpret_cast<void*>(sparse.getRows()), VALUE_TYPE_INT32),
        col_(reinterpret_cast<void*>(sparse.getCols()), VALUE_TYPE_INT32) {}
H
hedaoyuan 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

  ~SparseMatrixArg() {}

  void* getRowBuf() const { return row_.data(); }

  void* getColBuf() const { return col_.data(); }

  size_t nnz() const { return nnz_; }

  SparseDataFormat dataFormat() const { return format_; }

  SparseDataType dataType() const { return type_; }

private:
  BufferArg row_;
  BufferArg col_;
  size_t nnz_;
  SparseDataFormat format_;
  SparseDataType type_;
};

}  // namespace paddle