bifpn.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.initializer import Constant, Xavier

from ppdet.core.workspace import register

__all__ = ['BiFPN']


class FusionConv(object):
    def __init__(self, num_chan):
        super(FusionConv, self).__init__()
        self.num_chan = num_chan

    def __call__(self, inputs, name=''):
        x = fluid.layers.swish(inputs)
        # depthwise
        x = fluid.layers.conv2d(
            x,
            self.num_chan,
            filter_size=3,
            padding='SAME',
            groups=self.num_chan,
            param_attr=ParamAttr(
                initializer=Xavier(), name=name + '_dw_w'),
            bias_attr=False)
        # pointwise
        x = fluid.layers.conv2d(
            x,
            self.num_chan,
            filter_size=1,
            param_attr=ParamAttr(
                initializer=Xavier(), name=name + '_pw_w'),
            bias_attr=ParamAttr(
                regularizer=L2Decay(0.), name=name + '_pw_b'))
        # bn + act
        x = fluid.layers.batch_norm(
            x,
            momentum=0.997,
            epsilon=1e-04,
            param_attr=ParamAttr(
                initializer=Constant(1.0),
                regularizer=L2Decay(0.),
                name=name + '_bn_w'),
            bias_attr=ParamAttr(
                regularizer=L2Decay(0.), name=name + '_bn_b'))
        return x


class BiFPNCell(object):
    def __init__(self, num_chan, levels=5):
        super(BiFPNCell, self).__init__()
        self.levels = levels
        self.num_chan = num_chan
        num_trigates = levels - 2
        num_bigates = levels
        self.trigates = fluid.layers.create_parameter(
            shape=[num_trigates, 3],
            dtype='float32',
            default_initializer=fluid.initializer.Constant(1.))
        self.bigates = fluid.layers.create_parameter(
            shape=[num_bigates, 2],
            dtype='float32',
            default_initializer=fluid.initializer.Constant(1.))
        self.eps = 1e-4

    def __call__(self, inputs, cell_name=''):
        assert len(inputs) == self.levels

        def upsample(feat):
            return fluid.layers.resize_nearest(feat, scale=2.)

        def downsample(feat):
            return fluid.layers.pool2d(
                feat,
                pool_type='max',
                pool_size=3,
                pool_stride=2,
                pool_padding='SAME')

        fuse_conv = FusionConv(self.num_chan)

        # normalize weight
        trigates = fluid.layers.relu(self.trigates)
        bigates = fluid.layers.relu(self.bigates)
        trigates /= fluid.layers.reduce_sum(
            trigates, dim=1, keep_dim=True) + self.eps
        bigates /= fluid.layers.reduce_sum(
            bigates, dim=1, keep_dim=True) + self.eps

        feature_maps = list(inputs)  # make a copy
        # top down path
        for l in range(self.levels - 1):
            p = self.levels - l - 2
            w1 = fluid.layers.slice(
                bigates, axes=[0, 1], starts=[l, 0], ends=[l + 1, 1])
            w2 = fluid.layers.slice(
                bigates, axes=[0, 1], starts=[l, 1], ends=[l + 1, 2])
            above = upsample(feature_maps[p + 1])
            feature_maps[p] = fuse_conv(
                w1 * above + w2 * inputs[p],
                name='{}_tb_{}'.format(cell_name, l))
        # bottom up path
        for l in range(1, self.levels):
            p = l
            name = '{}_bt_{}'.format(cell_name, l)
            below = downsample(feature_maps[p - 1])
            if p == self.levels - 1:
                # handle P7
                w1 = fluid.layers.slice(
                    bigates, axes=[0, 1], starts=[p, 0], ends=[p + 1, 1])
                w2 = fluid.layers.slice(
                    bigates, axes=[0, 1], starts=[p, 1], ends=[p + 1, 2])
                feature_maps[p] = fuse_conv(
                    w1 * below + w2 * inputs[p], name=name)
            else:
                w1 = fluid.layers.slice(
                    trigates, axes=[0, 1], starts=[p - 1, 0], ends=[p, 1])
                w2 = fluid.layers.slice(
                    trigates, axes=[0, 1], starts=[p - 1, 1], ends=[p, 2])
                w3 = fluid.layers.slice(
                    trigates, axes=[0, 1], starts=[p - 1, 2], ends=[p, 3])
                feature_maps[p] = fuse_conv(
                    w1 * feature_maps[p] + w2 * below + w3 * inputs[p],
                    name=name)
        return feature_maps


@register
class BiFPN(object):
    """
    Bidirectional Feature Pyramid Network, see https://arxiv.org/abs/1911.09070

    Args:
        num_chan (int): number of feature channels
        repeat (int): number of repeats of the BiFPN module
        level (int): number of FPN levels, default: 5
    """

    def __init__(self, num_chan, repeat=3, levels=5):
        super(BiFPN, self).__init__()
        self.num_chan = num_chan
        self.repeat = repeat
        self.levels = levels

    def __call__(self, inputs):
        feats = []
        # NOTE add two extra levels
        for idx in range(self.levels):
            if idx <= len(inputs):
                if idx == len(inputs):
                    feat = inputs[-1]
                else:
                    feat = inputs[idx]

                if feat.shape[1] != self.num_chan:
                    feat = fluid.layers.conv2d(
                        feat,
                        self.num_chan,
                        filter_size=1,
                        padding='SAME',
                        param_attr=ParamAttr(initializer=Xavier()),
                        bias_attr=ParamAttr(regularizer=L2Decay(0.)))
                    feat = fluid.layers.batch_norm(
                        feat,
                        momentum=0.997,
                        epsilon=1e-04,
                        param_attr=ParamAttr(
                            initializer=Constant(1.0), regularizer=L2Decay(0.)),
                        bias_attr=ParamAttr(regularizer=L2Decay(0.)))

            if idx >= len(inputs):
                feat = fluid.layers.pool2d(
                    feat,
                    pool_type='max',
                    pool_size=3,
                    pool_stride=2,
                    pool_padding='SAME')
            feats.append(feat)

        biFPN = BiFPNCell(self.num_chan, self.levels)
        for r in range(self.repeat):
            feats = biFPN(feats, 'bifpn_{}'.format(r))
        return feats