reid.py 7.3 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import cv2
import numpy as np
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from python.infer import PredictConfig
from pptracking.python.det_infer import load_predictor
from python.utils import Timer


class ReID(object):
    """
    ReID of SDE methods

    Args:
        pred_config (object): config of model, defined by `Config(model_dir)`
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
        batch_size (int): size of per batch in inference, default 50 means at most
            50 sub images can be made a batch and send into ReID model
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
    """

    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=50,
                 trt_min_shape=1,
                 trt_max_shape=1088,
                 trt_opt_shape=608,
                 trt_calib_mode=False,
                 cpu_threads=4,
                 enable_mkldnn=False):
        self.pred_config = self.set_config(model_dir)
        self.predictor, self.config = load_predictor(
            model_dir,
            run_mode=run_mode,
            batch_size=batch_size,
            min_subgraph_size=self.pred_config.min_subgraph_size,
            device=device,
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
            enable_mkldnn=enable_mkldnn)
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
        self.batch_size = batch_size
J
JYChen 已提交
76
        self.input_wh = (128, 256)
Z
zhiboniu 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

    def set_config(self, model_dir):
        return PredictConfig(model_dir)

    def check_img_quality(self, crop, bbox, xyxy):
        if crop is None:
            return None
        #eclipse
        eclipse_quality = 1.0
        inner_rect = np.zeros(xyxy.shape)
        inner_rect[:, :2] = np.maximum(xyxy[:, :2], bbox[None, :2])
        inner_rect[:, 2:] = np.minimum(xyxy[:, 2:], bbox[None, 2:])
        wh_array = inner_rect[:, 2:] - inner_rect[:, :2]
        filt = np.logical_and(wh_array[:, 0] > 0, wh_array[:, 1] > 0)
        wh_array = wh_array[filt]
        if wh_array.shape[0] > 1:
            eclipse_ratio = wh_array / (bbox[2:] - bbox[:2])
            eclipse_area_ratio = eclipse_ratio[:, 0] * eclipse_ratio[:, 1]
            ear_lst = eclipse_area_ratio.tolist()
            ear_lst.sort(reverse=True)
            eclipse_quality = 1.0 - ear_lst[1]
        bbox_wh = (bbox[2:] - bbox[:2])
        height_quality = bbox_wh[1] / (bbox_wh[0] * 2)
        eclipse_quality = min(eclipse_quality, height_quality)

        #definition
        cropgray = cv2.cvtColor(crop, cv2.COLOR_BGR2GRAY)
        definition = int(cv2.Laplacian(cropgray, cv2.CV_64F, ksize=3).var())
        brightness = int(cropgray.mean())
        bd_quality = min(1., brightness / 50.)

        eclipse_weight = 0.7
        return eclipse_quality * eclipse_weight + bd_quality * (1 -
                                                                eclipse_weight)

    def normal_crop(self, image, rect):
        imgh, imgw, c = image.shape
        label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()]
        xmin = max(0, xmin)
        ymin = max(0, ymin)
        xmax = min(imgw, xmax)
        ymax = min(imgh, ymax)
        if label != 0 or xmax <= xmin or ymax <= ymin:
            print("Warning! label missed!!")
            return None, None, None
        return image[ymin:ymax, xmin:xmax, :]

    def crop_image_with_mot(self, image, mot_res):
        res = mot_res['boxes']
        crop_res = []
        img_quality = []
        rects = []
        for box in res:
            crop_image = self.normal_crop(image, box[1:])
            quality_item = self.check_img_quality(crop_image, box[3:],
                                                  res[:, 3:])
            if crop_image is not None:
                crop_res.append(crop_image)
                img_quality.append(quality_item)
                rects.append(box)
        return crop_res, img_quality, rects

    def preprocess(self,
                   imgs,
                   mean=[0.485, 0.456, 0.406],
                   std=[0.229, 0.224, 0.225]):
        im_batch = []
        for img in imgs:
            img = cv2.resize(img, self.input_wh)
            img = img.astype('float32') / 255.
            img -= np.array(mean)
            img /= np.array(std)
            im_batch.append(img.transpose((2, 0, 1)))
        inputs = {}
        inputs['x'] = np.array(im_batch).astype('float32')
        return inputs

    def predict(self, crops, repeats=1, add_timer=True, seq_name=''):
        # preprocess
        if add_timer:
            self.det_times.preprocess_time_s.start()
        inputs = self.preprocess(crops)
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

        if add_timer:
            self.det_times.preprocess_time_s.end()
            self.det_times.inference_time_s.start()

        # model prediction
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            feature_tensor = self.predictor.get_output_handle(output_names[0])
            pred_embs = feature_tensor.copy_to_cpu()
        if add_timer:
            self.det_times.inference_time_s.end(repeats=repeats)
            self.det_times.postprocess_time_s.start()

        if add_timer:
            self.det_times.postprocess_time_s.end()
            self.det_times.img_num += 1
        return pred_embs

    def predict_batch(self, imgs, batch_size=4):
        batch_feat = []
        for b in range(0, len(imgs), batch_size):
            b_end = min(len(imgs), b + batch_size)
            batch_imgs = imgs[b:b_end]
            feat = self.predict(batch_imgs)
            batch_feat.extend(feat.tolist())

        return batch_feat