run.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import numpy as np
import argparse
import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.core.workspace import create
from ppdet.metrics import COCOMetric, VOCMetric, KeyPointTopDownCOCOEval
from paddleslim.auto_compression.config_helpers import load_config as load_slim_config
from paddleslim.auto_compression import AutoCompression
from post_process import PPYOLOEPostProcess
G
Guanghua Yu 已提交
26
from paddleslim.common.dataloader import get_feed_vars
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of compression strategy config.",
        required=True)
    parser.add_argument(
        '--save_dir',
        type=str,
        default='output',
        help="directory to save compressed model.")
    parser.add_argument(
        '--devices',
        type=str,
        default='gpu',
        help="which device used to compress.")

    return parser


def reader_wrapper(reader, input_list):
    def gen():
        for data in reader:
            in_dict = {}
            if isinstance(input_list, list):
                for input_name in input_list:
                    in_dict[input_name] = data[input_name]
            elif isinstance(input_list, dict):
                for input_name in input_list.keys():
                    in_dict[input_list[input_name]] = data[input_name]
            yield in_dict

    return gen


def convert_numpy_data(data, metric):
    data_all = {}
    data_all = {k: np.array(v) for k, v in data.items()}
    if isinstance(metric, VOCMetric):
        for k, v in data_all.items():
            if not isinstance(v[0], np.ndarray):
                tmp_list = []
                for t in v:
                    tmp_list.append(np.array(t))
                data_all[k] = np.array(tmp_list)
    else:
        data_all = {k: np.array(v) for k, v in data.items()}
    return data_all


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
    metric = global_config['metric']
    for batch_id, data in enumerate(val_loader):
        data_all = convert_numpy_data(data, metric)
        data_input = {}
        for k, v in data.items():
            if isinstance(global_config['input_list'], list):
                if k in test_feed_names:
                    data_input[k] = np.array(v)
            elif isinstance(global_config['input_list'], dict):
                if k in global_config['input_list'].keys():
                    data_input[global_config['input_list'][k]] = np.array(v)
        outs = exe.run(compiled_test_program,
                       feed=data_input,
                       fetch_list=test_fetch_list,
                       return_numpy=False)
        res = {}
G
Guanghua Yu 已提交
98 99 100 101 102 103
        if 'include_nms' in global_config and not global_config['include_nms']:
            if 'arch' in global_config and global_config['arch'] == 'PPYOLOE':
                postprocess = PPYOLOEPostProcess(
                    score_threshold=0.01, nms_threshold=0.6)
            else:
                assert "Not support arch={} now.".format(global_config['arch'])
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
            res = postprocess(np.array(outs[0]), data_all['scale_factor'])
        else:
            for out in outs:
                v = np.array(out)
                if len(v.shape) > 1:
                    res['bbox'] = v
                else:
                    res['bbox_num'] = v

        metric.update(data_all, res)
        if batch_id % 100 == 0:
            print('Eval iter:', batch_id)
    metric.accumulate()
    metric.log()
    map_res = metric.get_results()
    metric.reset()
    map_key = 'keypoint' if 'arch' in global_config and global_config[
        'arch'] == 'keypoint' else 'bbox'
    return map_res[map_key][0]


def main():
    global global_config
    all_config = load_slim_config(FLAGS.config_path)
    assert "Global" in all_config, "Key 'Global' not found in config file."
    global_config = all_config["Global"]
    reader_cfg = load_config(global_config['reader_config'])

    train_loader = create('EvalReader')(reader_cfg['TrainDataset'],
                                        reader_cfg['worker_num'],
                                        return_list=True)
G
Guanghua Yu 已提交
135 136 137 138
    if global_config.get('input_list') is None:
        global_config['input_list'] = get_feed_vars(
            global_config['model_dir'], global_config['model_filename'],
            global_config['params_filename'])
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    train_loader = reader_wrapper(train_loader, global_config['input_list'])

    if 'Evaluation' in global_config.keys() and global_config[
            'Evaluation'] and paddle.distributed.get_rank() == 0:
        eval_func = eval_function
        dataset = reader_cfg['EvalDataset']
        global val_loader
        _eval_batch_sampler = paddle.io.BatchSampler(
            dataset, batch_size=reader_cfg['EvalReader']['batch_size'])
        val_loader = create('EvalReader')(dataset,
                                          reader_cfg['worker_num'],
                                          batch_sampler=_eval_batch_sampler,
                                          return_list=True)
        metric = None
        if reader_cfg['metric'] == 'COCO':
            clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
            anno_file = dataset.get_anno()
            metric = COCOMetric(
                anno_file=anno_file, clsid2catid=clsid2catid, IouType='bbox')
        elif reader_cfg['metric'] == 'VOC':
            metric = VOCMetric(
                label_list=dataset.get_label_list(),
                class_num=reader_cfg['num_classes'],
                map_type=reader_cfg['map_type'])
        elif reader_cfg['metric'] == 'KeyPointTopDownCOCOEval':
            anno_file = dataset.get_anno()
            metric = KeyPointTopDownCOCOEval(anno_file,
                                             len(dataset), 17, 'output_eval')
        else:
            raise ValueError("metric currently only supports COCO and VOC.")
        global_config['metric'] = metric
    else:
        eval_func = None

    ac = AutoCompression(
        model_dir=global_config["model_dir"],
        model_filename=global_config["model_filename"],
        params_filename=global_config["params_filename"],
        save_dir=FLAGS.save_dir,
        config=all_config,
        train_dataloader=train_loader,
        eval_callback=eval_func)
    ac.compress()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    assert FLAGS.devices in ['cpu', 'gpu', 'xpu', 'npu']
    paddle.set_device(FLAGS.devices)

    main()