widerface_eval_utils.py 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import numpy as np

22
from ppdet.data.source.widerface import widerface_label
23 24 25 26 27 28 29
from ppdet.utils.coco_eval import bbox2out

import logging
logger = logging.getLogger(__name__)

__all__ = [
    'get_shrink', 'bbox_vote', 'save_widerface_bboxes', 'save_fddb_bboxes',
30
    'to_chw_bgr', 'bbox2out', 'get_category_info', 'lmk2out'
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
]


def to_chw_bgr(image):
    """
    Transpose image from HWC to CHW and from RBG to BGR.
    Args:
        image (np.array): an image with HWC and RBG layout.
    """
    # HWC to CHW
    if len(image.shape) == 3:
        image = np.swapaxes(image, 1, 2)
        image = np.swapaxes(image, 1, 0)
    # RBG to BGR
    image = image[[2, 1, 0], :, :]
    return image


def bbox_vote(det):
    order = det[:, 4].ravel().argsort()[::-1]
    det = det[order, :]
    if det.shape[0] == 0:
        dets = np.array([[10, 10, 20, 20, 0.002]])
        det = np.empty(shape=[0, 5])
    while det.shape[0] > 0:
        # IOU
        area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
        xx1 = np.maximum(det[0, 0], det[:, 0])
        yy1 = np.maximum(det[0, 1], det[:, 1])
        xx2 = np.minimum(det[0, 2], det[:, 2])
        yy2 = np.minimum(det[0, 3], det[:, 3])
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        o = inter / (area[0] + area[:] - inter)

        # nms
        merge_index = np.where(o >= 0.3)[0]
        det_accu = det[merge_index, :]
        det = np.delete(det, merge_index, 0)
        if merge_index.shape[0] <= 1:
            if det.shape[0] == 0:
                try:
                    dets = np.row_stack((dets, det_accu))
                except:
                    dets = det_accu
            continue
        det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
        max_score = np.max(det_accu[:, 4])
        det_accu_sum = np.zeros((1, 5))
        det_accu_sum[:, 0:4] = np.sum(det_accu[:, 0:4],
                                      axis=0) / np.sum(det_accu[:, -1:])
        det_accu_sum[:, 4] = max_score
        try:
            dets = np.row_stack((dets, det_accu_sum))
        except:
            dets = det_accu_sum
    dets = dets[0:750, :]
    # Only keep 0.3 or more
    keep_index = np.where(dets[:, 4] >= 0.01)[0]
    dets = dets[keep_index, :]
    return dets


def get_shrink(height, width):
    """
    Args:
        height (int): image height.
        width (int): image width.
    """
    # avoid out of memory
    max_shrink_v1 = (0x7fffffff / 577.0 / (height * width))**0.5
    max_shrink_v2 = ((678 * 1024 * 2.0 * 2.0) / (height * width))**0.5

    def get_round(x, loc):
        str_x = str(x)
        if '.' in str_x:
            str_before, str_after = str_x.split('.')
            len_after = len(str_after)
            if len_after >= 3:
                str_final = str_before + '.' + str_after[0:loc]
                return float(str_final)
            else:
                return x

    max_shrink = get_round(min(max_shrink_v1, max_shrink_v2), 2) - 0.3
    if max_shrink >= 1.5 and max_shrink < 2:
        max_shrink = max_shrink - 0.1
    elif max_shrink >= 2 and max_shrink < 3:
        max_shrink = max_shrink - 0.2
    elif max_shrink >= 3 and max_shrink < 4:
        max_shrink = max_shrink - 0.3
    elif max_shrink >= 4 and max_shrink < 5:
        max_shrink = max_shrink - 0.4
    elif max_shrink >= 5:
        max_shrink = max_shrink - 0.5
127 128
    elif max_shrink <= 0.1:
        max_shrink = 0.1
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    shrink = max_shrink if max_shrink < 1 else 1
    return shrink, max_shrink


def save_widerface_bboxes(image_path, bboxes_scores, output_dir):
    image_name = image_path.split('/')[-1]
    image_class = image_path.split('/')[-2]
    odir = os.path.join(output_dir, image_class)
    if not os.path.exists(odir):
        os.makedirs(odir)

    ofname = os.path.join(odir, '%s.txt' % (image_name[:-4]))
    f = open(ofname, 'w')
    f.write('{:s}\n'.format(image_class + '/' + image_name))
    f.write('{:d}\n'.format(bboxes_scores.shape[0]))
    for box_score in bboxes_scores:
        xmin, ymin, xmax, ymax, score = box_score
        f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(xmin, ymin, (
            xmax - xmin + 1), (ymax - ymin + 1), score))
    f.close()
    logger.info("The predicted result is saved as {}".format(ofname))


def save_fddb_bboxes(bboxes_scores,
                     output_dir,
                     output_fname='pred_fddb_res.txt'):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    predict_file = os.path.join(output_dir, output_fname)
    f = open(predict_file, 'w')
    for image_path, dets in bboxes_scores.iteritems():
        f.write('{:s}\n'.format(image_path))
        f.write('{:d}\n'.format(dets.shape[0]))
        for box_score in dets:
            xmin, ymin, xmax, ymax, score = box_score
            width, height = xmax - xmin, ymax - ymin
            f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'
                    .format(xmin, ymin, width, height, score))
    logger.info("The predicted result is saved as {}".format(predict_file))
    return predict_file


def get_category_info(anno_file=None,
                      with_background=True,
                      use_default_label=False):
    if use_default_label or anno_file is None \
            or not os.path.exists(anno_file):
        logger.info("Not found annotation file {}, load "
                    "wider-face categories.".format(anno_file))
        return widerfaceall_category_info(with_background)
    else:
        logger.info("Load categories from {}".format(anno_file))
        return get_category_info_from_anno(anno_file, with_background)


def get_category_info_from_anno(anno_file, with_background=True):
    """
    Get class id to category id map and category id
    to category name map from annotation file.
    Args:
        anno_file (str): annotation file path
        with_background (bool, default True):
            whether load background as class 0.
    """
    cats = []
    with open(anno_file) as f:
        for line in f.readlines():
            cats.append(line.strip())

    if cats[0] != 'background' and with_background:
        cats.insert(0, 'background')
    if cats[0] == 'background' and not with_background:
        cats = cats[1:]

    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name


def widerfaceall_category_info(with_background=True):
    """
    Get class id to category id map and category id
    to category name map of mixup wider_face dataset

    Args:
        with_background (bool, default True):
            whether load background as class 0.
    """
    label_map = widerface_label(with_background)
    label_map = sorted(label_map.items(), key=lambda x: x[1])
    cats = [l[0] for l in label_map]

    if with_background:
        cats.insert(0, 'background')

    clsid2catid = {i: i for i in range(len(cats))}
    catid2name = {i: name for i, name in enumerate(cats)}

    return clsid2catid, catid2name
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284


def lmk2out(results, is_bbox_normalized=False):
    """
    Args:
        results: request a dict, should include: `landmark`, `im_id`,
                 if is_bbox_normalized=True, also need `im_shape`.
        is_bbox_normalized: whether or not landmark is normalized.
    """
    xywh_res = []
    for t in results:
        bboxes = t['bbox'][0]
        lengths = t['bbox'][1][0]
        im_ids = np.array(t['im_id'][0]).flatten()
        if bboxes.shape == (1, 1) or bboxes is None:
            continue
        face_index = t['face_index'][0]
        prior_box = t['prior_boxes'][0]
        predict_lmk = t['landmark'][0]
        prior = np.reshape(prior_box, (-1, 4))
        predictlmk = np.reshape(predict_lmk, (-1, 10))

        k = 0
        for a in range(len(lengths)):
            num = lengths[a]
            im_id = int(im_ids[a])
            for i in range(num):
                score = bboxes[k][1]
                theindex = face_index[i][0]
                me_prior = prior[theindex, :]
                lmk_pred = predictlmk[theindex, :]
                prior_w = me_prior[2] - me_prior[0]
                prior_h = me_prior[3] - me_prior[1]
                prior_w_center = (me_prior[2] + me_prior[0]) / 2
                prior_h_center = (me_prior[3] + me_prior[1]) / 2
                lmk_decode = np.zeros((10))
                for j in [0, 2, 4, 6, 8]:
                    lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_w_center
                for j in [1, 3, 5, 7, 9]:
                    lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_h_center
                im_shape = t['im_shape'][0][a].tolist()
                image_h, image_w = int(im_shape[0]), int(im_shape[1])
                if is_bbox_normalized:
                    lmk_decode = lmk_decode * np.array([
                        image_w, image_h, image_w, image_h, image_w, image_h,
                        image_w, image_h, image_w, image_h
                    ])
                lmk_res = {
                    'image_id': im_id,
                    'landmark': lmk_decode,
                    'score': score,
                }
                xywh_res.append(lmk_res)
                k += 1
    return xywh_res