htc_mask_head.py 7.4 KB
Newer Older
S
sunxl1988 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import MSRA
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register
from ppdet.modeling.ops import ConvNorm

__all__ = ['HTCMaskHead']


@register
class HTCMaskHead(object):
    """
    htc mask head
    Args:
        num_convs (int): num of convolutions, 4 for FPN, 1 otherwise
        conv_dim (int): num of channels after first convolution
        resolution (int): size of the output mask
        dilation (int): dilation rate
        num_classes (int): number of output classes
    """

    __shared__ = ['num_classes']

    def __init__(self,
                 num_convs=0,
                 conv_dim=256,
                 resolution=14,
                 dilation=1,
                 num_classes=81,
                 norm_type=None,
                 lr_ratio=2.0,
                 share_mask_conv=False):
        super(HTCMaskHead, self).__init__()
        self.num_convs = num_convs
        self.conv_dim = conv_dim
        self.resolution = resolution
        self.dilation = dilation
        self.num_classes = num_classes
        self.norm_type = norm_type
        self.lr_ratio = lr_ratio
        self.share_mask_conv = share_mask_conv

    def _mask_conv_head(self,
                        roi_feat,
                        num_convs,
                        norm_type,
                        wb_scalar=1.0,
                        name=''):
        if norm_type == 'gn':
            for i in range(num_convs):
                layer_name = "mask_inter_feat_" + str(i + 1)
                if not self.share_mask_conv:
                    layer_name += name
                fan = self.conv_dim * 3 * 3
                initializer = MSRA(uniform=False, fan_in=fan)
                roi_feat = ConvNorm(
                    roi_feat,
                    self.conv_dim,
                    3,
                    act='relu',
                    dilation=self.dilation,
                    initializer=initializer,
                    norm_type=self.norm_type,
                    name=layer_name,
                    norm_name=layer_name)
        else:
            for i in range(num_convs):
                layer_name = "mask_inter_feat_" + str(i + 1)
                if not self.share_mask_conv:
                    layer_name += name
                fan = self.conv_dim * 3 * 3
                initializer = MSRA(uniform=False, fan_in=fan)
                roi_feat = fluid.layers.conv2d(
                    input=roi_feat,
                    num_filters=self.conv_dim,
                    filter_size=3,
                    padding=1 * self.dilation,
                    act='relu',
                    stride=1,
                    dilation=self.dilation,
                    name=layer_name,
                    param_attr=ParamAttr(
                        name=layer_name + '_w', initializer=initializer),
                    bias_attr=ParamAttr(
                        name=layer_name + '_b',
                        learning_rate=wb_scalar * self.lr_ratio,
                        regularizer=L2Decay(0.)))
        return roi_feat

    def get_output(self,
                   roi_feat,
                   res_feat=None,
                   return_logits=True,
                   return_feat=False,
                   wb_scalar=1.0,
                   name=''):
        class_num = self.num_classes
        if res_feat is not None:
            res_feat = fluid.layers.conv2d(
                res_feat, roi_feat.shape[1], 1, name='res_net' + name)
            roi_feat = fluid.layers.sum([roi_feat, res_feat])
        # configure the conv number for FPN if necessary
        head_feat = self._mask_conv_head(roi_feat, self.num_convs,
                                         self.norm_type, wb_scalar, name)

        if return_logits:
            fan0 = roi_feat.shape[1] * 2 * 2
            up_head_feat = fluid.layers.conv2d_transpose(
                input=head_feat,
                num_filters=self.conv_dim,
                filter_size=2,
                stride=2,
                act='relu',
                param_attr=ParamAttr(
                    name='conv5_mask_w' + name,
                    initializer=MSRA(
                        uniform=False, fan_in=fan0)),
                bias_attr=ParamAttr(
                    name='conv5_mask_b' + name,
                    learning_rate=wb_scalar * self.lr_ratio,
                    regularizer=L2Decay(0.)))

            fan = class_num
            mask_logits = fluid.layers.conv2d(
                input=up_head_feat,
                num_filters=class_num,
                filter_size=1,
                act=None,
                param_attr=ParamAttr(
                    name='mask_fcn_logits_w' + name,
                    initializer=MSRA(
                        uniform=False, fan_in=fan)),
                bias_attr=ParamAttr(
                    name="mask_fcn_logits_b" + name,
                    learning_rate=wb_scalar * self.lr_ratio,
                    regularizer=L2Decay(0.)))
            if return_feat:
                return mask_logits, head_feat
            else:
                return mask_logits

        if return_feat:
            return head_feat

    def get_loss(self,
                 mask_logits_list,
                 mask_int32_list,
                 cascade_loss_weights=[1.0, 0.5, 0.25]):
        num_classes = self.num_classes
        resolution = self.resolution
        dim = num_classes * resolution * resolution
        loss_mask_dict = {}
        for i, (mask_logits, mask_int32
                ) in enumerate(zip(mask_logits_list, mask_int32_list)):

            mask_logits = fluid.layers.reshape(mask_logits, (-1, dim))
            mask_label = fluid.layers.cast(x=mask_int32, dtype='float32')
            mask_label.stop_gradient = True
            loss_name = 'loss_mask_' + str(i)
            loss_mask = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=mask_logits,
                label=mask_label,
                ignore_index=-1,
                normalize=True,
                name=loss_name)
            loss_mask = fluid.layers.reduce_sum(
                loss_mask) * cascade_loss_weights[i]
            loss_mask_dict[loss_name] = loss_mask
        return loss_mask_dict

    def get_prediction(self, mask_logits, bbox_pred):
        """
        Get prediction mask in test stage.

        Args:
            mask_logits (Variable): mask head output features.
            bbox_pred (Variable): predicted bbox.

        Returns:
            mask_pred (Variable): Prediction mask with shape
                [N, num_classes, resolution, resolution].
        """
        mask_prob = fluid.layers.sigmoid(mask_logits)
        mask_prob = fluid.layers.lod_reset(mask_prob, bbox_pred)
        return mask_prob