ttf_head.py 15.1 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Normal, Constant, Uniform, Xavier
from paddle.fluid.regularizer import L2Decay
from ppdet.core.workspace import register
from ppdet.modeling.ops import DeformConv, DropBlock
from ppdet.modeling.losses import GiouLoss

__all__ = ['TTFHead']


@register
class TTFHead(object):
    """
    TTFHead
    Args:
        head_conv(int): the default channel number of convolution in head. 
            128 by default.
        num_classes(int): the number of classes, 80 by default.
        hm_weight(float): the weight of heatmap branch. 1. by default.
        wh_weight(float): the weight of wh branch. 5. by default.
        wh_offset_base(flaot): the base offset of width and height. 
            16. by default.
        planes(tuple): the channel number of convolution in each upsample. 
            (256, 128, 64) by default.
        shortcut_num(tuple): the number of convolution layers in each shortcut.
            (1, 2, 3) by default.
        wh_head_conv_num(int): the number of convolution layers in wh head.
            2 by default.
        hm_head_conv_num(int): the number of convolution layers in wh head.
            2 by default.
        wh_conv(int): the channel number of convolution in wh head. 
            64 by default.
        wh_planes(int): the output channel in wh head. 4 by default.
        score_thresh(float): the score threshold to get prediction. 
            0.01 by default.
        max_per_img(int): the maximum detection per image. 100 by default.
        base_down_ratio(int): the base down_ratio, the actual down_ratio is 
            calculated by base_down_ratio and the number of upsample layers.
            16 by default.
        wh_loss(object): `GiouLoss` instance.
        dcn_upsample(bool): whether upsample by dcn. True by default.
        dcn_head(bool): whether use dcn in head. False by default.
        drop_block(bool): whether use dropblock. False by default.
        block_size(int): block_size parameter for drop_block. 3 by default.
        keep_prob(float): keep_prob parameter for drop_block. 0.9 by default.
    """

    __inject__ = ['wh_loss']
    __shared__ = ['num_classes']

    def __init__(self,
                 head_conv=128,
                 num_classes=80,
                 hm_weight=1.,
                 wh_weight=5.,
                 wh_offset_base=16.,
                 planes=(256, 128, 64),
                 shortcut_num=(1, 2, 3),
                 wh_head_conv_num=2,
                 hm_head_conv_num=2,
                 wh_conv=64,
                 wh_planes=4,
                 score_thresh=0.01,
                 max_per_img=100,
                 base_down_ratio=32,
                 wh_loss='GiouLoss',
                 dcn_upsample=True,
                 dcn_head=False,
                 drop_block=False,
                 block_size=3,
                 keep_prob=0.9):
        super(TTFHead, self).__init__()
        self.head_conv = head_conv
        self.num_classes = num_classes
        self.hm_weight = hm_weight
        self.wh_weight = wh_weight
        self.wh_offset_base = wh_offset_base
        self.planes = planes
        self.shortcut_num = shortcut_num
        self.shortcut_len = len(shortcut_num)
        self.wh_head_conv_num = wh_head_conv_num
        self.hm_head_conv_num = hm_head_conv_num
        self.wh_conv = wh_conv
        self.wh_planes = wh_planes
        self.score_thresh = score_thresh
        self.max_per_img = max_per_img
        self.down_ratio = base_down_ratio // 2**len(planes)
        self.hm_weight = hm_weight
        self.wh_weight = wh_weight
        self.wh_loss = wh_loss
        self.dcn_upsample = dcn_upsample
        self.dcn_head = dcn_head
        self.drop_block = drop_block
        self.block_size = block_size
        self.keep_prob = keep_prob

    def shortcut(self, x, out_c, layer_num, kernel_size=3, padding=1,
                 name=None):
        assert layer_num > 0
        for i in range(layer_num):
            act = 'relu' if i < layer_num - 1 else None
            fan_out = kernel_size * kernel_size * out_c
            std = math.sqrt(2. / fan_out)
            param_name = name + '.layers.' + str(i * 2)
            x = fluid.layers.conv2d(
                x,
                out_c,
                kernel_size,
                padding=padding,
                act=act,
                param_attr=ParamAttr(
                    initializer=Normal(0, std), name=param_name + '.weight'),
                bias_attr=ParamAttr(
                    learning_rate=2.,
                    regularizer=L2Decay(0.),
                    name=param_name + '.bias'))
        return x

    def upsample(self, x, out_c, name=None):
        fan_in = x.shape[1] * 3 * 3
        stdv = 1. / math.sqrt(fan_in)
        if self.dcn_upsample:
            conv = DeformConv(
                x,
                out_c,
                3,
                initializer=Uniform(-stdv, stdv),
                bias_attr=True,
                name=name + '.0')
        else:
            conv = fluid.layers.conv2d(
                x,
                out_c,
                3,
                padding=1,
                param_attr=ParamAttr(initializer=Uniform(-stdv, stdv)),
                bias_attr=ParamAttr(
                    learning_rate=2., regularizer=L2Decay(0.)))

        norm_name = name + '.1'
        pattr = ParamAttr(name=norm_name + '.weight', initializer=Constant(1.))
        battr = ParamAttr(name=norm_name + '.bias', initializer=Constant(0.))
        bn = fluid.layers.batch_norm(
            input=conv,
            act='relu',
            param_attr=pattr,
            bias_attr=battr,
            name=norm_name + '.output.1',
            moving_mean_name=norm_name + '.running_mean',
            moving_variance_name=norm_name + '.running_var')
        up = fluid.layers.resize_bilinear(
            bn, scale=2, name=name + '.2.upsample')
        return up

    def _head(self,
              x,
              out_c,
              conv_num=1,
              head_out_c=None,
              name=None,
              is_test=False):
        head_out_c = self.head_conv if not head_out_c else head_out_c
        conv_w_std = 0.01 if '.hm' in name else 0.001
        conv_w_init = Normal(0, conv_w_std)
        for i in range(conv_num):
            conv_name = '{}.{}.conv'.format(name, i)
            if self.dcn_head:
                x = DeformConv(
                    x,
                    head_out_c,
                    3,
                    initializer=conv_w_init,
                    name=conv_name + '.dcn')
                x = fluid.layers.relu(x)
            else:
                x = fluid.layers.conv2d(
                    x,
                    head_out_c,
                    3,
                    padding=1,
                    param_attr=ParamAttr(
                        initializer=conv_w_init, name=conv_name + '.weight'),
                    bias_attr=ParamAttr(
                        learning_rate=2.,
                        regularizer=L2Decay(0.),
                        name=conv_name + '.bias'),
                    act='relu')
        if self.drop_block and '.hm' in name:
            x = DropBlock(
                x,
                block_size=self.block_size,
                keep_prob=self.keep_prob,
                is_test=is_test)
        bias_init = float(-np.log((1 - 0.01) / 0.01)) if '.hm' in name else 0.
        conv_b_init = Constant(bias_init)
        x = fluid.layers.conv2d(
            x,
            out_c,
            1,
            param_attr=ParamAttr(
                initializer=conv_w_init,
                name='{}.{}.weight'.format(name, conv_num)),
            bias_attr=ParamAttr(
                learning_rate=2.,
                regularizer=L2Decay(0.),
                name='{}.{}.bias'.format(name, conv_num),
                initializer=conv_b_init))
        return x

    def hm_head(self, x, name=None, is_test=False):
        hm = self._head(
            x,
            self.num_classes,
            self.hm_head_conv_num,
            name=name,
            is_test=is_test)
        return hm

    def wh_head(self, x, name=None):
        planes = self.wh_planes
        wh = self._head(
            x, planes, self.wh_head_conv_num, self.wh_conv, name=name)
        return fluid.layers.relu(wh)

    def get_output(self, input, name=None, is_test=False):
        feat = input[-1]
        for i, out_c in enumerate(self.planes):
            feat = self.upsample(
                feat, out_c, name=name + '.deconv_layers.' + str(i))
            if i < self.shortcut_len:
                shortcut = self.shortcut(
                    input[-i - 2],
                    out_c,
                    self.shortcut_num[i],
                    name=name + '.shortcut_layers.' + str(i))
                feat = fluid.layers.elementwise_add(feat, shortcut)

        hm = self.hm_head(feat, name=name + '.hm', is_test=is_test)
        wh = self.wh_head(feat, name=name + '.wh') * self.wh_offset_base

        return hm, wh

    def _simple_nms(self, heat, kernel=3):
        pad = (kernel - 1) // 2
        hmax = fluid.layers.pool2d(heat, kernel, 'max', pool_padding=pad)
        keep = fluid.layers.cast(hmax == heat, 'float32')
        return heat * keep

    def _topk(self, scores, k):
        cat, height, width = scores.shape[1:]
        # batch size is 1
        scores_r = fluid.layers.reshape(scores, [cat, -1])
        topk_scores, topk_inds = fluid.layers.topk(scores_r, k)
        topk_ys = topk_inds / width
        topk_xs = topk_inds % width

        topk_score_r = fluid.layers.reshape(topk_scores, [-1])
        topk_score, topk_ind = fluid.layers.topk(topk_score_r, k)
        topk_clses = fluid.layers.cast(topk_ind / k, 'float32')

        topk_inds = fluid.layers.reshape(topk_inds, [-1])
        topk_ys = fluid.layers.reshape(topk_ys, [-1, 1])
        topk_xs = fluid.layers.reshape(topk_xs, [-1, 1])
        topk_inds = fluid.layers.gather(topk_inds, topk_ind)
        topk_ys = fluid.layers.gather(topk_ys, topk_ind)
        topk_xs = fluid.layers.gather(topk_xs, topk_ind)

        return topk_score, topk_inds, topk_clses, topk_ys, topk_xs

    def get_bboxes(self, heatmap, wh, scale_factor):
        heatmap = fluid.layers.sigmoid(heatmap)
        heat = self._simple_nms(heatmap)
        scores, inds, clses, ys, xs = self._topk(heat, self.max_per_img)
        ys = fluid.layers.cast(ys, 'float32') * self.down_ratio
        xs = fluid.layers.cast(xs, 'float32') * self.down_ratio
        scores = fluid.layers.unsqueeze(scores, [1])
        clses = fluid.layers.unsqueeze(clses, [1])

        wh_t = fluid.layers.transpose(wh, [0, 2, 3, 1])
        wh = fluid.layers.reshape(wh_t, [-1, wh_t.shape[-1]])
        wh = fluid.layers.gather(wh, inds)

        x1 = xs - wh[:, 0:1]
        y1 = ys - wh[:, 1:2]
        x2 = xs + wh[:, 2:3]
        y2 = ys + wh[:, 3:4]
        bboxes = fluid.layers.concat([x1, y1, x2, y2], axis=1)
        bboxes = fluid.layers.elementwise_div(bboxes, scale_factor, axis=-1)
        results = fluid.layers.concat([clses, scores, bboxes], axis=1)
        # hack: append result with cls=-1 and score=1. to avoid all scores
        # are less than score_thresh which may cause error in gather.
        fill_r = fluid.layers.assign(
            np.array(
                [[-1, 1., 0, 0, 0, 0]], dtype='float32'))
        results = fluid.layers.concat([results, fill_r])
        scores = results[:, 1]
        valid_ind = fluid.layers.where(scores > self.score_thresh)
        results = fluid.layers.gather(results, valid_ind)
        return {'bbox': results}

    def ct_focal_loss(self, pred_hm, target_hm, gamma=2.0):
        fg_map = fluid.layers.cast(target_hm == 1, 'float32')
        fg_map.stop_gradient = True
        bg_map = fluid.layers.cast(target_hm < 1, 'float32')
        bg_map.stop_gradient = True

        neg_weights = fluid.layers.pow(1 - target_hm, 4) * bg_map
        pos_loss = 0 - fluid.layers.log(pred_hm) * fluid.layers.pow(
            1 - pred_hm, gamma) * fg_map
        neg_loss = 0 - fluid.layers.log(1 - pred_hm) * fluid.layers.pow(
            pred_hm, gamma) * neg_weights
        pos_loss = fluid.layers.reduce_sum(pos_loss)
        neg_loss = fluid.layers.reduce_sum(neg_loss)

        fg_num = fluid.layers.reduce_sum(fg_map)
        focal_loss = (pos_loss + neg_loss) / (
            fg_num + fluid.layers.cast(fg_num == 0, 'float32'))
        return focal_loss

    def filter_box_by_weight(self, pred, target, weight):
        index = fluid.layers.where(weight > 0)
        index.stop_gradient = True
        weight = fluid.layers.gather_nd(weight, index)
        pred = fluid.layers.gather_nd(pred, index)
        target = fluid.layers.gather_nd(target, index)
        return pred, target, weight

    def get_loss(self, pred_hm, pred_wh, target_hm, box_target, target_weight):
351 352 353 354 355
        try:
            pred_hm = paddle.clip(fluid.layers.sigmoid(pred_hm), 1e-4, 1 - 1e-4)
        except:
            pred_hm = paddle.tensor.clamp(
                fluid.layers.sigmoid(pred_hm), 1e-4, 1 - 1e-4)
W
wangguanzhong 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        hm_loss = self.ct_focal_loss(pred_hm, target_hm) * self.hm_weight
        shape = fluid.layers.shape(target_hm)
        shape.stop_gradient = True
        H, W = shape[2], shape[3]

        mask = fluid.layers.reshape(target_weight, [-1, H, W])
        avg_factor = fluid.layers.reduce_sum(mask) + 1e-4
        base_step = self.down_ratio
        zero = fluid.layers.fill_constant(shape=[1], value=0, dtype='int32')
        shifts_x = paddle.arange(zero, W * base_step, base_step, dtype='int32')
        shifts_y = paddle.arange(zero, H * base_step, base_step, dtype='int32')
        shift_y, shift_x = paddle.tensor.meshgrid([shifts_y, shifts_x])
        base_loc = fluid.layers.stack([shift_x, shift_y], axis=0)
        base_loc.stop_gradient = True

        pred_boxes = fluid.layers.concat(
            [0 - pred_wh[:, 0:2, :, :] + base_loc, pred_wh[:, 2:4] + base_loc],
            axis=1)
        pred_boxes = fluid.layers.transpose(pred_boxes, [0, 2, 3, 1])
        boxes = fluid.layers.transpose(box_target, [0, 2, 3, 1])
        boxes.stop_gradient = True

        pred_boxes, boxes, mask = self.filter_box_by_weight(pred_boxes, boxes,
                                                            mask)
        mask.stop_gradient = True
        wh_loss = self.wh_loss(
            pred_boxes, boxes, outside_weight=mask, use_transform=False)
        wh_loss = wh_loss / avg_factor

        ttf_loss = {'hm_loss': hm_loss, 'wh_loss': wh_loss}
        return ttf_loss