solov2_r101_vd_fpn_3x.yml 2.0 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
architecture: SOLOv2
use_gpu: true
max_iters: 270000
snapshot_iter: 30000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
metric: COCO
weights: output/solov2_r101_vd_fpn_3x/model_final
num_classes: 81
use_ema: true
ema_decay: 0.9998

SOLOv2:
  backbone: ResNet
  fpn: FPN
  bbox_head: SOLOv2Head
  mask_head: SOLOv2MaskHead

ResNet:
  depth: 101
  feature_maps: [2, 3, 4, 5]
  freeze_at: 2
  norm_type: bn
  dcn_v2_stages: [3, 4, 5]
  variant: d

FPN:
  max_level: 6
  min_level: 2
  num_chan: 256
  spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
  reverse_out: True

SOLOv2Head:
  seg_feat_channels: 512
  stacked_convs: 4
  num_grids: [40, 36, 24, 16, 12]
  kernel_out_channels: 256
  solov2_loss: SOLOv2Loss
  mask_nms: MaskMatrixNMS
  dcn_v2_stages: [0, 1, 2, 3]

SOLOv2MaskHead:
  in_channels: 128
  out_channels: 256
  start_level: 0
  end_level: 3
  use_dcn_in_tower: True

SOLOv2Loss:
  ins_loss_weight: 3.0
  focal_loss_gamma: 2.0
  focal_loss_alpha: 0.25

MaskMatrixNMS:
  pre_nms_top_n: 500
  post_nms_top_n: 100

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [180000, 240000]
  - !LinearWarmup
    start_factor: 0.
    steps: 1000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

_READER_: 'solov2_reader.yml'
TrainReader:
G
Guanghua Yu 已提交
80
  batch_size: 2
G
Guanghua Yu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  sample_transforms:
  - !DecodeImage
    to_rgb: true
  - !Poly2Mask {}
  - !ResizeImage
    target_size: [640, 672, 704, 736, 768, 800]
    max_size: 1333
    interp: 1
    use_cv2: true
    resize_box: true
  - !RandomFlipImage
    prob: 0.5
  - !NormalizeImage
    is_channel_first: false
    is_scale: true
    mean: [0.485,0.456,0.406]
    std: [0.229, 0.224,0.225]
  - !Permute
    to_bgr: false
    channel_first: true
  batch_transforms:
  - !PadBatch
    pad_to_stride: 32
  - !Gt2Solov2Target
    num_grids: [40, 36, 24, 16, 12]
    scale_ranges: [[1, 96], [48, 192], [96, 384], [192, 768], [384, 2048]]
    coord_sigma: 0.2