faster_rcnn_x101_vd_64x4d_fpn_1x.yml 2.0 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3
architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
4
use_gpu: true
5
log_iter: 20
G
Guanghua Yu 已提交
6 7 8 9
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/faster_rcnn_x101_vd_64x4d_fpn_1x/model_final
metric: COCO
10
num_classes: 81
G
Guanghua Yu 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

FasterRCNN:
  backbone: ResNeXt
  fpn: FPN
  rpn_head: FPNRPNHead
  roi_extractor: FPNRoIAlign
  bbox_head: BBoxHead
  bbox_assigner: BBoxAssigner

ResNeXt:
  depth: 101
  feature_maps: [2, 3, 4, 5]
  freeze_at: 2
  group_width: 4
  groups: 64
  norm_type: affine_channel
  variant: d

FPN:
  max_level: 6
  min_level: 2
  num_chan: 256
  spatial_scale: [0.03125, 0.0625, 0.125, 0.25]

FPNRPNHead:
  anchor_generator:
    anchor_sizes: [32, 64, 128, 256, 512]
    aspect_ratios: [0.5, 1.0, 2.0]
    stride: [16.0, 16.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  anchor_start_size: 32
  max_level: 6
  min_level: 2
  num_chan: 256
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_negative_overlap: 0.3
    rpn_positive_overlap: 0.7
    rpn_straddle_thresh: 0.0
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    post_nms_top_n: 2000
    pre_nms_top_n: 2000
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    post_nms_top_n: 1000
    pre_nms_top_n: 1000

FPNRoIAlign:
  canconical_level: 4
  canonical_size: 224
  max_level: 5
  min_level: 2
  box_resolution: 7
  sampling_ratio: 2

BBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  bg_thresh_hi: 0.5
  bg_thresh_lo: 0.0
  fg_fraction: 0.25
  fg_thresh: 0.5

BBoxHead:
  head: TwoFCHead
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    score_threshold: 0.05

TwoFCHead:
Y
Yuan Gao 已提交
86
  mlp_dim: 1024
G
Guanghua Yu 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [120000, 160000]
    values: null
  - !LinearWarmup
    start_factor: 0.1
    steps: 1000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

107
_READER_: 'faster_fpn_reader.yml'