faster_rcnn_r34_fpn_1x.yml 2.0 KB
Newer Older
1 2 3 4
architecture: FasterRCNN
max_iters: 90000
use_gpu: true
snapshot_iter: 10000
5
log_iter: 20
6
save_dir: output
G
Guanghua Yu 已提交
7
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
metric: COCO
weights: output/faster_rcnn_r34_fpn_1x/model_final
num_classes: 81

FasterRCNN:
  backbone: ResNet
  fpn: FPN
  rpn_head: FPNRPNHead
  roi_extractor: FPNRoIAlign
  bbox_head: BBoxHead
  bbox_assigner: BBoxAssigner

ResNet:
  norm_type: bn
  norm_decay: 0.
  depth: 34
  feature_maps: [2, 3, 4, 5]
  freeze_at: 2

FPN:
  min_level: 2
  max_level: 6
  num_chan: 256
  spatial_scale: [0.03125, 0.0625, 0.125, 0.25]

FPNRPNHead:
  anchor_generator:
    anchor_sizes: [32, 64, 128, 256, 512]
    aspect_ratios: [0.5, 1.0, 2.0]
    stride: [16.0, 16.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  anchor_start_size: 32
  min_level: 2
  max_level: 6
  num_chan: 256
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_positive_overlap: 0.7
    rpn_negative_overlap: 0.3
    rpn_straddle_thresh: 0.0
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 2000
    post_nms_top_n: 2000
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 1000
    post_nms_top_n: 1000

FPNRoIAlign:
  canconical_level: 4
  canonical_size: 224
  min_level: 2
  max_level: 5
  box_resolution: 7
  sampling_ratio: 2

BBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  bg_thresh_lo: 0.0
  bg_thresh_hi: 0.5
  fg_fraction: 0.25
  fg_thresh: 0.5

BBoxHead:
  head: TwoFCHead
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    score_threshold: 0.05

TwoFCHead:
  mlp_dim: 1024

LearningRate:
  base_lr: 0.02
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [60000, 80000]
  - !LinearWarmup
    start_factor: 0.1
    steps: 1000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

_READER_: 'faster_fpn_reader.yml'
TrainReader:
  batch_size: 2