cspdarknet.py 6.6 KB
Newer Older
W
wangguanzhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register

__all__ = ['CSPDarkNet']


@register
class CSPDarkNet(object):
    """
    CSPDarkNet, see https://arxiv.org/abs/1911.11929 
    Args:
        depth (int): network depth, currently only cspdarknet 53 is supported
        norm_type (str): normalization type, 'bn' and 'sync_bn' are supported
        norm_decay (float): weight decay for normalization layer weights
    """
    __shared__ = ['norm_type', 'weight_prefix_name']

    def __init__(self,
                 depth=53,
                 norm_type='bn',
                 norm_decay=0.,
                 weight_prefix_name=''):
        assert depth in [53], "unsupported depth value"
        self.depth = depth
        self.norm_type = norm_type
        self.norm_decay = norm_decay
        self.depth_cfg = {53: ([1, 2, 8, 8, 4], self.basicblock)}
        self.prefix_name = weight_prefix_name

    def _softplus(self, input):
        expf = fluid.layers.exp(fluid.layers.clip(input, -200, 50))
        return fluid.layers.log(1 + expf)

    def _mish(self, input):
        return input * fluid.layers.tanh(self._softplus(input))

    def _conv_norm(self,
                   input,
                   ch_out,
                   filter_size,
                   stride,
                   padding,
                   act='mish',
                   name=None):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            act=None,
            param_attr=ParamAttr(name=name + ".conv.weights"),
            bias_attr=False)

        bn_name = name + ".bn"
        bn_param_attr = ParamAttr(
            regularizer=L2Decay(float(self.norm_decay)),
            name=bn_name + '.scale')
        bn_bias_attr = ParamAttr(
            regularizer=L2Decay(float(self.norm_decay)),
            name=bn_name + '.offset')

        out = fluid.layers.batch_norm(
            input=conv,
            act=None,
            param_attr=bn_param_attr,
            bias_attr=bn_bias_attr,
            moving_mean_name=bn_name + '.mean',
            moving_variance_name=bn_name + '.var')

        if act == 'mish':
            out = self._mish(out)

        return out

    def _downsample(self,
                    input,
                    ch_out,
                    filter_size=3,
                    stride=2,
                    padding=1,
                    name=None):
        return self._conv_norm(
            input,
            ch_out=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            name=name)

    def conv_layer(self,
                   input,
                   ch_out,
                   filter_size=1,
                   stride=1,
                   padding=0,
                   name=None):
        return self._conv_norm(
            input,
            ch_out=ch_out,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            name=name)

    def basicblock(self, input, ch_out, scale_first=False, name=None):
        conv1 = self._conv_norm(
            input,
            ch_out=ch_out // 2 if scale_first else ch_out,
            filter_size=1,
            stride=1,
            padding=0,
            name=name + ".0")
        conv2 = self._conv_norm(
            conv1,
            ch_out=ch_out,
            filter_size=3,
            stride=1,
            padding=1,
            name=name + ".1")
        out = fluid.layers.elementwise_add(x=input, y=conv2, act=None)
        return out

    def layer_warp(self,
                   block_func,
                   input,
                   ch_out,
                   count,
                   keep_ch=False,
                   scale_first=False,
                   name=None):
        if scale_first:
            ch_out = ch_out * 2
        right = self.conv_layer(
            input, ch_out, name='{}.route_in.right'.format(name))
        neck = self.conv_layer(input, ch_out, name='{}.neck'.format(name))
        out = block_func(
            neck,
            ch_out=ch_out,
            scale_first=scale_first,
            name='{}.0'.format(name))
        for j in six.moves.xrange(1, count):
            out = block_func(out, ch_out=ch_out, name='{}.{}'.format(name, j))
        left = self.conv_layer(
            out, ch_out, name='{}.route_in.left'.format(name))
        route = fluid.layers.concat([left, right], axis=1)
        out = self.conv_layer(
            route,
            ch_out=ch_out if keep_ch else ch_out * 2,
            name='{}.conv_layer'.format(name))
        return out

    def __call__(self, input):
        """
        Get the backbone of CSPDarkNet, that is output for the 5 stages.

        Args:
            input (Variable): input variable.

        Returns:
            The last variables of each stage.
        """
        stages, block_func = self.depth_cfg[self.depth]
        stages = stages[0:5]
        conv = self._conv_norm(
            input=input,
            ch_out=32,
            filter_size=3,
            stride=1,
            padding=1,
            act='mish',
            name=self.prefix_name + "conv")
        blocks = []
        for i, stage in enumerate(stages):
            input = conv if i == 0 else block
            downsample_ = self._downsample(
                input=input,
                ch_out=input.shape[1] * 2,
                name=self.prefix_name + "stage.{}.downsample".format(i))
            block = self.layer_warp(
                block_func=block_func,
                input=downsample_,
                ch_out=32 * 2**i,
                count=stage,
                keep_ch=(i == 0),
                scale_first=i == 0,
                name=self.prefix_name + "stage.{}".format(i))
            blocks.append(block)
        return blocks