fcos_r50_fpn_iou_1x_coco.yml 1.9 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
_BASE_: [
  '../datasets/coco_detection.yml',
  '../runtime.yml',
  '_base_/fcos_r50_fpn.yml',
  '_base_/optimizer_1x.yml',
  '_base_/fcos_reader.yml',
]

weights: output/fcos_r50_fpn_iou_1x_coco/model_final


TrainReader:
  sample_transforms:
    - Decode: {}
F
Feng Ni 已提交
15
    - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
F
Feng Ni 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - RandomFlip: {}
  batch_transforms:
    - Permute: {}
    - PadBatch: {pad_to_stride: 32}
    - Gt2FCOSTarget:
        object_sizes_boundary: [64, 128, 256, 512]
        center_sampling_radius: 1.5
        downsample_ratios: [8, 16, 32, 64, 128]
        norm_reg_targets: True
  batch_size: 2
  shuffle: True
  drop_last: True
F
Feng Ni 已提交
29
  use_shared_memory: True
F
Feng Ni 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79


EvalReader:
  sample_transforms:
    - Decode: {}
    - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
  batch_transforms:
    - PadBatch: {pad_to_stride: 32}
  batch_size: 1


TestReader:
  sample_transforms:
    - Decode: {}
    - Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
  batch_transforms:
    - PadBatch: {pad_to_stride: 32}
  batch_size: 1
  fuse_normalize: True


FCOSHead:
  fcos_feat:
    name: FCOSFeat
    feat_in: 256
    feat_out: 256
    num_convs: 4
    norm_type: "gn"
    use_dcn: False
  fpn_stride: [8, 16, 32, 64, 128]
  prior_prob: 0.01
  norm_reg_targets: True
  centerness_on_reg: True
  fcos_loss:
    name: FCOSLoss
    loss_alpha: 0.25
    loss_gamma: 2.0
    iou_loss_type: "giou"
    reg_weights: 1.0
    quality: "iou" # default 'centerness'
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 100
    score_threshold: 0.025
    nms_threshold: 0.6