test_train_inference_python.sh 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#!/bin/bash
source test_tipc/utils_func.sh

FILENAME=$1
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer'
#                 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
MODE=$2

# parse params
dataline=$(cat ${FILENAME})
IFS=$'\n'
lines=(${dataline})

# The training params
model_name=$(func_parser_value "${lines[1]}")
echo "ppdet python_infer: ${model_name}"
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
32 33
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

trainer_list=$(func_parser_value "${lines[14]}")
norm_key=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

# eval params
eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

# export params
save_export_key=$(func_parser_key "${lines[27]}")
save_export_value=$(func_parser_value "${lines[27]}")
export_weight_key=$(func_parser_key "${lines[28]}")
export_weight_value=$(func_parser_value "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
65
export_onnx_key=$(func_parser_key "${lines[34]}")
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
export_value2=$(func_parser_value "${lines[34]}")
kl_quant_export=$(func_parser_value "${lines[35]}")

# parser inference model
infer_mode_list=$(func_parser_value "${lines[37]}")
infer_is_quant_list=$(func_parser_value "${lines[38]}")
# parser inference
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")

95
LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
96 97 98 99 100 101 102 103 104 105 106 107
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
Z
zhengya01 已提交
108
    _gpu=$7
109 110 111 112 113 114 115 116 117
    # inference
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
Z
zhengya01 已提交
118
                        _save_log_path="${_log_path}/python_infer_cpu_gpus_${gpu}_usemkldnn_${use_mkldnn}_threads_${threads}_mode_paddle_batchsize_${batch_size}.log"
119 120 121 122 123 124 125 126 127 128
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
Z
zhengya01 已提交
129
                        status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}"
130 131 132 133 134
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for precision in ${precision_list[*]}; do
135
                if [[ ${precision} != "paddle" ]]; then
136 137 138 139 140 141 142 143
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} = "trt_int8" ]]; then
                        continue
                    fi
                    if [[ ${_flag_quant} = "True" ]] && [[ ${precision} != "trt_int8" ]]; then
                        continue
                    fi
                fi
                for batch_size in ${batch_size_list[*]}; do
Z
zhengya01 已提交
144
                    _save_log_path="${_log_path}/python_infer_gpu_gpus_${gpu}_mode_${precision}_batchsize_${batch_size}.log"
145 146 147 148 149 150 151 152 153 154
                    set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                    set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                    set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                    set_precision=$(func_set_params "${precision_key}" "${precision}")
                    set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                    set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                    command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
                    eval $command
                    last_status=${PIPESTATUS[0]}
                    eval "cat ${_save_log_path}"
Z
zhengya01 已提交
155
                    status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}"
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
    # set CUDA_VISIBLE_DEVICES
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    eval $env

    Count=0
Z
zhengya01 已提交
175
    gpu=0
176 177 178
    IFS="|"
    infer_quant_flag=(${infer_is_quant_list})
    for infer_mode in ${infer_mode_list[*]}; do
179 180 181
        if [ ${infer_mode} = "null" ]; then
            continue
        fi
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        if [ ${MODE} = "klquant_whole_infer" ] && [ ${infer_mode} != "kl_quant" ]; then
            continue
        fi
        if [ ${MODE} = "whole_infer" ] && [ ${infer_mode} = "kl_quant" ]; then
            continue
        fi
        # run export
        case ${infer_mode} in
            norm) run_export=${norm_export} ;;
            pact) run_export=${pact_export} ;;
            fpgm) run_export=${fpgm_export} ;;
            distill) run_export=${distill_export} ;;
            kl_quant) run_export=${kl_quant_export} ;;
            *) echo "Undefined infer_mode!"; exit 1;
        esac
        set_export_weight=$(func_set_params "${export_weight_key}" "${export_weight_value}")
        set_save_export_dir=$(func_set_params "${save_export_key}" "${save_export_value}")
199
        set_filename=$(func_set_params "filename" "${model_name}")
200 201 202
        export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} "
        echo  $export_cmd
        eval $export_cmd
Z
zhengya01 已提交
203
        status_check $? "${export_cmd}" "${status_log}" "${model_name}" 
204 205 206 207

        #run inference
        save_export_model_dir="${save_export_value}/${model_name}"
        is_quant=${infer_quant_flag[Count]}
Z
zhengya01 已提交
208
        func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} "{gpu}"
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        Count=$((${Count} + 1))
    done
else
    IFS="|"
    Count=0
    for gpu in ${gpu_list[*]}; do
        use_gpu=${train_use_gpu_value}
        Count=$((${Count} + 1))
        ips=""
        if [ ${gpu} = "-1" ];then
            env=""
            use_gpu=False
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do
            for trainer in ${trainer_list[*]}; do
                flag_quant=False
                if [ ${trainer} = "${norm_key}" ]; then
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                elif [ ${trainer} = "${pact_key}" ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = "${trainer_key1}" ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [ ${trainer} = "${trainer_key2}" ]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    continue
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi

                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
270
                set_filename=$(func_set_params "filename" "${model_name}")
271
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
272
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
273
                save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
274 275
                if [ ${autocast} = "amp" ] || [ ${autocast} = "fp16" ]; then
                    set_autocast="--amp"
276
                    set_amp_level="amp_level=O2"
277 278
                else
                    set_autocast=" "
279 280 281 282 283 284 285 286
                    set_amp_level=" "
                fi
                if [ ${MODE} = "benchmark_train" ]; then
                    set_shuffle="TrainReader.shuffle=False"
                    set_enable_ce="--enable_ce=True"
                else
                    set_shuffle=" "
                    set_enable_ce=" "
287
                fi
288 289

                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
290
                nodes="1"
291
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
292
                    cmd="${python} ${run_train} LearningRate.base_lr=0.0001 log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_train_params1}"
293
                elif [ ${#ips} -le 15 ];then  # train with multi-gpu
294
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_train_params1}"
295
                else     # train with multi-machine
296 297 298 299 300 301
                    IFS=","
                    ips_array=(${ips})
                    nodes=${#ips_array[@]}
                    save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
                    IFS="|"
                    set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
302
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_train_params1}"
303 304
                fi
                # run train
305 306
                train_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}.log"
                eval "${cmd} > ${train_log_path} 2>&1"
307 308
                last_status=$?
                cat ${train_log_path}
Z
zhengya01 已提交
309
                status_check $last_status "${cmd}" "${status_log}" "${model_name}" "${train_log_path}"
310 311 312 313 314

                set_eval_trained_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}")
                # run eval
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
315
                    eval_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log"
316
                    eval_cmd="${python} ${eval_py} ${set_eval_trained_weight} ${set_use_gpu} ${set_eval_params1}"
317
                    eval "${eval_cmd} > ${eval_log_path} 2>&1"
318 319
                    last_status=$?
                    cat ${eval_log_path}
Z
zhengya01 已提交
320
                    status_check $last_status "${eval_cmd}" "${status_log}" "${model_name}" "${eval_log_path}"
321 322 323
                fi
                # run export model
                if [ ${run_export} != "null" ]; then
324
                    save_export_model_dir="${save_log}/${model_name}"
325
                    set_export_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}")
326
                    set_save_export_dir=$(func_set_params "${save_export_key}" "${save_log}")
327 328 329 330
                    if [ ${export_onnx_key} = "export_onnx" ]; then
                        # run export onnx model for rcnn
                        export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} export_onnx=True ${set_save_export_dir} "
                        eval $export_cmd
331
                        status_check $? "${export_cmd}" "${status_log}" "${model_name}"
332 333 334 335
                        # copy model for inference benchmark
                        eval "cp ${save_export_model_dir}/* ${save_log}/"
                    fi
                    # run export model
336
                    export_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log"
337
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} "
338
                    eval "${export_cmd} > ${export_log_path} 2>&1"
339 340
                    last_status=$?
                    cat ${export_log_path}
Z
zhengya01 已提交
341
                    status_check $last_status "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path}"
342 343

                    #run inference
344 345 346 347
                    if [ ${export_onnx_key} != "export_onnx" ]; then
                        # copy model for inference benchmark
                        eval "cp ${save_export_model_dir}/* ${save_log}/"
                    fi
348
                    eval $env
Z
zhengya01 已提交
349
                    func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" "{gpu}"
350 351 352 353 354 355 356

                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do
        done      # done with:    for autocast in ${autocast_list[*]}; do
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then