test_ops.py 16.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4)))
if parent_path not in sys.path:
    sys.path.append(parent_path)

import unittest
import numpy as np

import paddle

import ppdet.modeling.ops as ops
from ppdet.modeling.tests.test_base import LayerTest


def make_rois(h, w, rois_num, output_size):
    rois = np.zeros((0, 4)).astype('float32')
    for roi_num in rois_num:
        roi = np.zeros((roi_num, 4)).astype('float32')
        roi[:, 0] = np.random.randint(0, h - output_size[0], size=roi_num)
        roi[:, 1] = np.random.randint(0, w - output_size[1], size=roi_num)
        roi[:, 2] = np.random.randint(roi[:, 0] + output_size[0], h)
        roi[:, 3] = np.random.randint(roi[:, 1] + output_size[1], w)
        rois = np.vstack((rois, roi))
    return rois


def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


class TestROIAlign(LayerTest):
    def test_roi_align(self):
        b, c, h, w = 2, 12, 20, 20
        inputs_np = np.random.rand(b, c, h, w).astype('float32')
        rois_num = [4, 6]
        output_size = (7, 7)
        rois_np = make_rois(h, w, rois_num, output_size)
        rois_num_np = np.array(rois_num).astype('int32')
        with self.static_graph():
            inputs = paddle.static.data(
                name='inputs', shape=[b, c, h, w], dtype='float32')
            rois = paddle.static.data(
                name='rois', shape=[10, 4], dtype='float32')
            rois_num = paddle.static.data(
                name='rois_num', shape=[None], dtype='int32')

67 68 69 70 71
            output = paddle.vision.ops.roi_align(
                x=inputs,
                boxes=rois,
                boxes_num=rois_num,
                output_size=output_size)
Q
qingqing01 已提交
72 73 74 75 76 77 78 79 80 81
            output_np, = self.get_static_graph_result(
                feed={
                    'inputs': inputs_np,
                    'rois': rois_np,
                    'rois_num': rois_num_np
                },
                fetch_list=output,
                with_lod=False)

        with self.dynamic_graph():
W
wangguanzhong 已提交
82 83 84
            inputs_dy = paddle.to_tensor(inputs_np)
            rois_dy = paddle.to_tensor(rois_np)
            rois_num_dy = paddle.to_tensor(rois_num_np)
Q
qingqing01 已提交
85

86 87 88 89 90
            output_dy = paddle.vision.ops.roi_align(
                x=inputs_dy,
                boxes=rois_dy,
                boxes_num=rois_num_dy,
                output_size=output_size)
Q
qingqing01 已提交
91 92 93 94 95 96 97 98 99 100 101 102
            output_dy_np = output_dy.numpy()

        self.assertTrue(np.array_equal(output_np, output_dy_np))

    def test_roi_align_error(self):
        with self.static_graph():
            inputs = paddle.static.data(
                name='inputs', shape=[2, 12, 20, 20], dtype='float32')
            rois = paddle.static.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
103
                paddle.vision.ops.roi_align,
Q
qingqing01 已提交
104 105 106 107
                input=inputs,
                rois=rois,
                output_size=(7, 7))

108 109
        paddle.disable_static()

Q
qingqing01 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

class TestROIPool(LayerTest):
    def test_roi_pool(self):
        b, c, h, w = 2, 12, 20, 20
        inputs_np = np.random.rand(b, c, h, w).astype('float32')
        rois_num = [4, 6]
        output_size = (7, 7)
        rois_np = make_rois(h, w, rois_num, output_size)
        rois_num_np = np.array(rois_num).astype('int32')
        with self.static_graph():
            inputs = paddle.static.data(
                name='inputs', shape=[b, c, h, w], dtype='float32')
            rois = paddle.static.data(
                name='rois', shape=[10, 4], dtype='float32')
            rois_num = paddle.static.data(
                name='rois_num', shape=[None], dtype='int32')

127 128 129 130 131
            output = paddle.vision.ops.roi_pool(
                x=inputs,
                boxes=rois,
                boxes_num=rois_num,
                output_size=output_size)
Q
qingqing01 已提交
132 133 134 135 136 137 138 139 140 141
            output_np, = self.get_static_graph_result(
                feed={
                    'inputs': inputs_np,
                    'rois': rois_np,
                    'rois_num': rois_num_np
                },
                fetch_list=[output],
                with_lod=False)

        with self.dynamic_graph():
W
wangguanzhong 已提交
142 143 144
            inputs_dy = paddle.to_tensor(inputs_np)
            rois_dy = paddle.to_tensor(rois_np)
            rois_num_dy = paddle.to_tensor(rois_num_np)
Q
qingqing01 已提交
145

146 147 148 149 150
            output_dy = paddle.vision.ops.roi_pool(
                x=inputs_dy,
                boxes=rois_dy,
                boxes_num=rois_num_dy,
                output_size=output_size)
Q
qingqing01 已提交
151 152 153 154 155 156 157 158 159 160 161 162
            output_dy_np = output_dy.numpy()

        self.assertTrue(np.array_equal(output_np, output_dy_np))

    def test_roi_pool_error(self):
        with self.static_graph():
            inputs = paddle.static.data(
                name='inputs', shape=[2, 12, 20, 20], dtype='float32')
            rois = paddle.static.data(
                name='data_error', shape=[10, 4], dtype='int32', lod_level=1)
            self.assertRaises(
                TypeError,
163
                paddle.vision.ops.roi_pool,
Q
qingqing01 已提交
164 165 166 167
                input=inputs,
                rois=rois,
                output_size=(7, 7))

168 169
        paddle.disable_static()

Q
qingqing01 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

class TestPriorBox(LayerTest):
    def test_prior_box(self):
        input_np = np.random.rand(2, 10, 32, 32).astype('float32')
        image_np = np.random.rand(2, 10, 40, 40).astype('float32')
        min_sizes = [2, 4]
        with self.static_graph():
            input = paddle.static.data(
                name='input', shape=[2, 10, 32, 32], dtype='float32')
            image = paddle.static.data(
                name='image', shape=[2, 10, 40, 40], dtype='float32')

            box, var = ops.prior_box(
                input=input,
                image=image,
                min_sizes=min_sizes,
                clip=True,
                flip=True)
            box_np, var_np = self.get_static_graph_result(
                feed={
                    'input': input_np,
                    'image': image_np,
                },
                fetch_list=[box, var],
                with_lod=False)

        with self.dynamic_graph():
W
wangguanzhong 已提交
197 198
            inputs_dy = paddle.to_tensor(input_np)
            image_dy = paddle.to_tensor(image_np)
Q
qingqing01 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

            box_dy, var_dy = ops.prior_box(
                input=inputs_dy,
                image=image_dy,
                min_sizes=min_sizes,
                clip=True,
                flip=True)
            box_dy_np = box_dy.numpy()
            var_dy_np = var_dy.numpy()

        self.assertTrue(np.array_equal(box_np, box_dy_np))
        self.assertTrue(np.array_equal(var_np, var_dy_np))

    def test_prior_box_error(self):
        with self.static_graph():
            input = paddle.static.data(
                name='input', shape=[2, 10, 32, 32], dtype='int32')
            image = paddle.static.data(
                name='image', shape=[2, 10, 40, 40], dtype='int32')
            self.assertRaises(
                TypeError,
                ops.prior_box,
                input=input,
                image=image,
                min_sizes=[2, 4],
                clip=True,
                flip=True)

227
        paddle.disable_static()
Q
qingqing01 已提交
228 229 230 231


class TestMulticlassNms(LayerTest):
    def test_multiclass_nms(self):
W
wangguanzhong 已提交
232 233 234
        boxes_np = np.random.rand(10, 81, 4).astype('float32')
        scores_np = np.random.rand(10, 81).astype('float32')
        rois_num_np = np.array([2, 8]).astype('int32')
Q
qingqing01 已提交
235 236
        with self.static_graph():
            boxes = paddle.static.data(
W
wangguanzhong 已提交
237 238 239 240
                name='bboxes',
                shape=[None, 81, 4],
                dtype='float32',
                lod_level=1)
Q
qingqing01 已提交
241
            scores = paddle.static.data(
W
wangguanzhong 已提交
242
                name='scores', shape=[None, 81], dtype='float32', lod_level=1)
Q
qingqing01 已提交
243
            rois_num = paddle.static.data(
W
wangguanzhong 已提交
244
                name='rois_num', shape=[None], dtype='int32')
Q
qingqing01 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

            output = ops.multiclass_nms(
                bboxes=boxes,
                scores=scores,
                background_label=0,
                score_threshold=0.5,
                nms_top_k=400,
                nms_threshold=0.3,
                keep_top_k=200,
                normalized=False,
                return_index=True,
                rois_num=rois_num)
            out_np, index_np, nms_rois_num_np = self.get_static_graph_result(
                feed={
                    'bboxes': boxes_np,
                    'scores': scores_np,
                    'rois_num': rois_num_np
                },
                fetch_list=output,
W
wangguanzhong 已提交
264 265 266 267
                with_lod=True)
            out_np = np.array(out_np)
            index_np = np.array(index_np)
            nms_rois_num_np = np.array(nms_rois_num_np)
Q
qingqing01 已提交
268 269

        with self.dynamic_graph():
W
wangguanzhong 已提交
270 271 272
            boxes_dy = paddle.to_tensor(boxes_np)
            scores_dy = paddle.to_tensor(scores_np)
            rois_num_dy = paddle.to_tensor(rois_num_np)
Q
qingqing01 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

            out_dy, index_dy, nms_rois_num_dy = ops.multiclass_nms(
                bboxes=boxes_dy,
                scores=scores_dy,
                background_label=0,
                score_threshold=0.5,
                nms_top_k=400,
                nms_threshold=0.3,
                keep_top_k=200,
                normalized=False,
                return_index=True,
                rois_num=rois_num_dy)
            out_dy_np = out_dy.numpy()
            index_dy_np = index_dy.numpy()
            nms_rois_num_dy_np = nms_rois_num_dy.numpy()

        self.assertTrue(np.array_equal(out_np, out_dy_np))
        self.assertTrue(np.array_equal(index_np, index_dy_np))
        self.assertTrue(np.array_equal(nms_rois_num_np, nms_rois_num_dy_np))

    def test_multiclass_nms_error(self):
        with self.static_graph():
            boxes = paddle.static.data(
                name='bboxes', shape=[81, 4], dtype='float32', lod_level=1)
            scores = paddle.static.data(
                name='scores', shape=[81], dtype='float32', lod_level=1)
            rois_num = paddle.static.data(
                name='rois_num', shape=[40, 41], dtype='int32')
            self.assertRaises(
                TypeError,
                ops.multiclass_nms,
                boxes=boxes,
                scores=scores,
                background_label=0,
                score_threshold=0.5,
                nms_top_k=400,
                nms_threshold=0.3,
                keep_top_k=200,
                normalized=False,
                return_index=True,
                rois_num=rois_num)


class TestMatrixNMS(LayerTest):
    def test_matrix_nms(self):
        N, M, C = 7, 1200, 21
        BOX_SIZE = 4
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = 0.01
        post_threshold = 0.

        scores_np = np.random.random((N * M, C)).astype('float32')
        scores_np = np.apply_along_axis(softmax, 1, scores_np)
        scores_np = np.reshape(scores_np, (N, M, C))
        scores_np = np.transpose(scores_np, (0, 2, 1))

        boxes_np = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes_np[:, :, 0:2] = boxes_np[:, :, 0:2] * 0.5
        boxes_np[:, :, 2:4] = boxes_np[:, :, 2:4] * 0.5 + 0.5

        with self.static_graph():
            boxes = paddle.static.data(
                name='boxes', shape=[N, M, BOX_SIZE], dtype='float32')
            scores = paddle.static.data(
                name='scores', shape=[N, C, M], dtype='float32')
            out, index, _ = ops.matrix_nms(
                bboxes=boxes,
                scores=scores,
                score_threshold=score_threshold,
                post_threshold=post_threshold,
                nms_top_k=nms_top_k,
                keep_top_k=keep_top_k,
                return_index=True)
            out_np, index_np = self.get_static_graph_result(
                feed={'boxes': boxes_np,
                      'scores': scores_np},
                fetch_list=[out, index],
                with_lod=True)

        with self.dynamic_graph():
W
wangguanzhong 已提交
354 355
            boxes_dy = paddle.to_tensor(boxes_np)
            scores_dy = paddle.to_tensor(scores_np)
Q
qingqing01 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

            out_dy, index_dy, _ = ops.matrix_nms(
                bboxes=boxes_dy,
                scores=scores_dy,
                score_threshold=score_threshold,
                post_threshold=post_threshold,
                nms_top_k=nms_top_k,
                keep_top_k=keep_top_k,
                return_index=True)
            out_dy_np = out_dy.numpy()
            index_dy_np = index_dy.numpy()

        self.assertTrue(np.array_equal(out_np, out_dy_np))
        self.assertTrue(np.array_equal(index_np, index_dy_np))

    def test_matrix_nms_error(self):
        with self.static_graph():
            bboxes = paddle.static.data(
                name='bboxes', shape=[7, 1200, 4], dtype='float32')
            scores = paddle.static.data(
                name='data_error', shape=[7, 21, 1200], dtype='int32')
            self.assertRaises(
                TypeError,
                ops.matrix_nms,
                bboxes=bboxes,
                scores=scores,
                score_threshold=0.01,
                post_threshold=0.,
                nms_top_k=400,
                keep_top_k=200,
                return_index=True)

388 389
        paddle.disable_static()

Q
qingqing01 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

class TestBoxCoder(LayerTest):
    def test_box_coder(self):

        prior_box_np = np.random.random((81, 4)).astype('float32')
        prior_box_var_np = np.random.random((81, 4)).astype('float32')
        target_box_np = np.random.random((20, 81, 4)).astype('float32')

        # static
        with self.static_graph():
            prior_box = paddle.static.data(
                name='prior_box', shape=[81, 4], dtype='float32')
            prior_box_var = paddle.static.data(
                name='prior_box_var', shape=[81, 4], dtype='float32')
            target_box = paddle.static.data(
                name='target_box', shape=[20, 81, 4], dtype='float32')

            boxes = ops.box_coder(
                prior_box=prior_box,
                prior_box_var=prior_box_var,
                target_box=target_box,
                code_type="decode_center_size",
                box_normalized=False)

            boxes_np, = self.get_static_graph_result(
                feed={
                    'prior_box': prior_box_np,
                    'prior_box_var': prior_box_var_np,
                    'target_box': target_box_np,
                },
                fetch_list=[boxes],
                with_lod=False)

        # dygraph
        with self.dynamic_graph():
W
wangguanzhong 已提交
425 426 427
            prior_box_dy = paddle.to_tensor(prior_box_np)
            prior_box_var_dy = paddle.to_tensor(prior_box_var_np)
            target_box_dy = paddle.to_tensor(target_box_np)
Q
qingqing01 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

            boxes_dy = ops.box_coder(
                prior_box=prior_box_dy,
                prior_box_var=prior_box_var_dy,
                target_box=target_box_dy,
                code_type="decode_center_size",
                box_normalized=False)

            boxes_dy_np = boxes_dy.numpy()

            self.assertTrue(np.array_equal(boxes_np, boxes_dy_np))

    def test_box_coder_error(self):
        with self.static_graph():
            prior_box = paddle.static.data(
                name='prior_box', shape=[81, 4], dtype='int32')
            prior_box_var = paddle.static.data(
                name='prior_box_var', shape=[81, 4], dtype='float32')
            target_box = paddle.static.data(
                name='target_box', shape=[20, 81, 4], dtype='float32')

            self.assertRaises(TypeError, ops.box_coder, prior_box,
                              prior_box_var, target_box)

452 453
        paddle.disable_static()

Q
qingqing01 已提交
454 455 456

if __name__ == '__main__':
    unittest.main()